2 research outputs found

    Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation

    Get PDF
    Cdc37 is a molecular chaperone that functions with Hsp90 to promote protein kinase folding. Analysis of 65 Saccharomyces cerevisiae protein kinases (∼50% of the kinome) in a cdc37 mutant strain showed that 51 had decreased abundance compared with levels in the wild-type strain. Several lipid kinases also accumulated in reduced amounts in the cdc37 mutant strain. Results from our pulse-labeling studies showed that Cdc37 protects nascent kinase chains from rapid degradation shortly after synthesis. This degradation phenotype was suppressed when cdc37 mutant cells were grown at reduced temperatures, although this did not lead to a full restoration of kinase activity. We propose that Cdc37 functions at distinct steps in kinase biogenesis that involves protecting nascent chains from rapid degradation followed by its folding function in association with Hsp90. Our studies demonstrate that Cdc37 has a general role in kinome biogenesis

    Uncoupling of hormone-dependence from chaperone-dependence in the L701H mutation of the androgen receptor

    No full text
    Copyright Β© 2007 Elsevier Ireland Ltd All rights reserved.The mechanisms underlying androgen receptor (AR)-mediated progression of prostate cancer following androgen ablation have yet to be fully determined. On this basis we screened naturally occurring mutants of human AR for hormone-independent activity using a yeast model system. An initial screen of 43 different mutants revealed that ARs having a Leu701His mutation (AR(L701H)) exhibited hormone-independent activation of a lacZ reporter gene. The AR(L701H) mutant bound dihydrotestosterone to a similar extent as did wild type AR, although its ability to be induced by hormone for transactivation was reduced substantially. Subsequent studies focused on the dependence of AR(L701H) on molecular chaperones for folding to the active state. We found that AR(L701H) was highly dependent on Hsp90 for its hormone-independent activation, suggesting that this chaperone functions in AR(L701H) folding. However, the mutant did not respond specifically to increased levels of FKBP52, suggesting that this chaperone functions at the hormone-dependent activation stage in the folding process. Further studies of AR(L701H) in PC3 cells suggested that this mutant is prohibited from hormone-independent transactivation in mammalian cells. However, basal expression of a reporter gene by AR(L701H) was not impaired by the presence of 17-allylamino-17-demethoxygeldanamycin as was wild type AR, suggesting differential interactions of these receptors with molecular chaperones in animal cells.Kenneth Robzyka, Handy Oenb, Grant Buchananc, Lisa M. Butlerc, Wayne D. Tilleyc, Atin K. Mandalb, Neal Rosena and Avrom J. Caplanhttp://www.elsevier.com/wps/find/journaldescription.cws_home/506028/description#descriptio
    corecore