53 research outputs found

    Seconds-scale coherence in a tweezer-array optical clock

    Get PDF
    Optical clocks based on atoms and ions achieve exceptional precision and accuracy, with applications to relativistic geodesy, tests of relativity, and searches for dark matter. Achieving such performance requires balancing competing desirable features, including a high particle number, isolation of atoms from collisions, insensitivity to motional effects, and high duty-cycle operation. Here we demonstrate a new platform based on arrays of ultracold strontium atoms confined within optical tweezers that realizes a novel combination of these features by providing a scalable platform for isolated atoms that can be interrogated multiple times. With this tweezer-array clock, we achieve greater than 3 second coherence times and record duty cycles up to 96%, as well as stability commensurate with leading platforms. By using optical tweezer arrays --- a proven platform for the controlled creation of entanglement through microscopic control --- this work further promises a new path toward combining entanglement enhanced sensitivities with the most precise optical clock transitions

    Crystalline optical cavity at 4 K with thermal noise limited instability and ultralow drift

    Get PDF
    Crystalline optical cavities are the foundation of today's state-of-the-art ultrastable lasers. Building on our previous silicon cavity effort, we now achieve the fundamental thermal noise-limited stability for a 6 cm long silicon cavity cooled to 4 Kelvin, reaching 6.5×10−176.5\times10^{-17} from 0.8 to 80 seconds. We also report for the first time a clear linear dependence of the cavity frequency drift on the incident optical power. The lowest fractional frequency drift of −3×10−19-3\times10^{-19}/s is attained at a transmitted power of 40 nW, with an extrapolated drift approaching zero in the absence of optical power. These demonstrations provide a promising direction to reach a new performance domain for stable lasers, with stability better than 1×10−171\times10^{-17} and fractional linear drift below 1×10−191\times10^{-19}/s

    Structural thermal noise in gram-scale mirror oscillators

    Get PDF
    The thermal noise associated with mechanical dissipation is a ubiquitous limitation to the sensitivity of precision experiments ranging from frequency stabilization to gravitational wave interferometry. We report on the thermal noise limits to the performance of 1 gm mirror oscillators that are part of a cavity optomechanics experiment to observe quantum radiation pressure noise. Thermal noise limits the observed cavity displacement spectrum from 80 Hz to 5 kHz. We present a calculation of the thermal noise, based on finite element analysis of the dissipation due to structural damping, and find it to be in excellent agreement with the experimental result. We conclude with the predicted thermal noise for an improved oscillator design, which should be capable of revealing the noise that arises from quantum backaction in this system.National Science Foundation (U.S.) (Grant PHY-1068772

    Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift

    Get PDF
    Crystalline optical cavities are the foundation of today’s state-of-the-art ultrastable lasers. Building on our previous silicon cavity effort, we now achieve the fundamental thermal-noise-limited stability for a 6 cm long silicon cavity cooled to 4 K, reaching 6.5×10−17 from 0.8 s to 80 s. We also report for the first time, to the best of our knowledge, a clear linear dependence of the cavity frequency drift on incident optical power. The lowest fractional frequency drift of −3×10−19/s is attained at a transmitted power of 40 nW, with an extrapolated drift approaching zero in the absence of optical power. These demonstrations provide a promising direction to reach a new performance domain for stable lasers, with stability better than 1×10−17 and fractional linear drift below 1×10−19/s

    Precision Metrology Meets Cosmology: Improved Constraints on Ultralight Dark Matter from Atom-Cavity Frequency Comparisons

    Get PDF
    We conduct frequency comparisons between a state-of-the-art strontium optical lattice clock, a cryogenic crystalline silicon cavity, and a hydrogen maser to set new bounds on the coupling of ultralight dark matter to Standard Model particles and fields in the mass range of 10−1610^{-16} −- 10−2110^{-21} eV. The key advantage of this two-part ratio comparison is the differential sensitivities to time variation of both the fine-structure constant and the electron mass, achieving a substantially improved limit on the moduli of ultralight dark matter, particularly at higher masses than typical atomic spectroscopic results. Furthermore, we demonstrate an extension of the search range to even higher masses by use of dynamical decoupling techniques. These results highlight the importance of using the best performing atomic clocks for fundamental physics applications as all-optical timescales are increasingly integrated with, and will eventually supplant, existing microwave timescales.Comment: 11 pages, 10 figure

    A tweezer clock with half-minute atomic coherence at optical frequencies and high relative stability

    Get PDF
    The preparation of large, low-entropy, highly coherent ensembles of identical quantum systems is foundational for many studies in quantum metrology, simulation, and information. Here, we realize these features by leveraging the favorable properties of tweezer-trapped alkaline-earth atoms while introducing a new, hybrid approach to tailoring optical potentials that balances scalability, high-fidelity state preparation, site-resolved readout, and preservation of atomic coherence. With this approach, we achieve trapping and optical clock excited-state lifetimes exceeding 40 40 seconds in ensembles of approximately 150 150 atoms. This leads to half-minute-scale atomic coherence on an optical clock transition, corresponding to quality factors well in excess of 101610^{16}. These coherence times and atom numbers reduce the effect of quantum projection noise to a level that is on par with leading atomic systems, yielding a relative fractional frequency stability of 5.2(3)×10−17 (τ/s)−1/25.2(3)\times10^{-17}~(\tau/s)^{-1/2} for synchronous clock comparisons between sub-ensembles within the tweezer array. When further combined with the microscopic control and readout available in this system, these results pave the way towards long-lived engineered entanglement on an optical clock transition in tailored atom arrays.Comment: 11 pages, 5 figures (main text); 17 pages, 7 figures (supplemental materials

    Excess noise and photo-induced effects in highly reflective crystalline mirror coatings

    Full text link
    Thermodynamically induced length fluctuations of high-reflectivity mirror coatings put a fundamental limit on sensitivity and stability of precision optical interferometers like gravitational wave detectors and ultra-stable lasers. The main contribution - Brownian thermal noise - is related to the mechanical loss of the coating material. Owing to their low mechanical losses, Al\textsubscript{0.92}Ga\textsubscript{0.08}As/GaAs crystalline mirror coatings are expected to reduce this limit. At room temperature they have demonstrated lower Brownian thermal noise than with conventional amorphous coatings. %However, no detailed study on the noise constituents from these coatings in optical interferometers has been conducted. We present a detailed study on the spatial and temporal noise properties of such coatings by using them in two independent cryogenic silicon optical Fabry-Perot resonators operated at 4 K, 16 K and 124 K. We confirm the expected low Brownian thermal noise, but also discover two new noise sources that exceed the Brownian noise: birefringent noise that can be canceled via polarization averaging and global excess noise (10 dB above Brownian noise). These new noise contributions are a barrier to improving ultra-stable lasers and the related performance of atomic clocks, and potentially limit the sensitivity of third-generation gravitational wave detectors. Hence, they must be considered carefully in precision interferometry experiments using similar coatings based on semiconductor materials

    First all-sky search for continuous gravitational waves from unknown sources in binary systems

    Get PDF
    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ∼2,254  h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ∼0.6 × 10[superscript −3]  ls to ∼6,500  ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3 × 10[superscript −24] at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationResearch CorporationAlfred P. Sloan Foundatio
    • …
    corecore