3 research outputs found

    Saprotrophic yeasts formerly classified as Pseudozyma have retained a large effector arsenal, including functional Pep1 orthologs

    No full text
    The basidiomycete smut fungi are predominantly plant parasitic, causing severe losses in some crops. Most species feature a saprotrophic haploid yeast stage, and several smut fungi are only known from this stage, with some isolated from habitats without suitable hosts, e.g. from Antarctica. Thus, these species are generally believed to be apathogenic, but recent findings that some of these might have a plant pathogenic teleomorph counterpart cast doubts on the validity of this hypothesis. Here, four genomes of species previously assigned to the polyphyletic genus Pseudozyma were re-annotated and compared with published smut pathogens. It was found that 113 genes coding for putative secreted effector proteins were conserved among smut-causing and Pseudozyma genomes. Among these were several validated effector genes, including Pep1. Orthologs of this well-characterised effector from Pseudozyma yeasts were further analysed and checked for their ability to complement a Pep1-deficient mutants of Ustilago maydis. By genetic complementation, we show that Pep1 homologs from the supposedly apathogenic yeasts restore virulence in Pep1-deficient mutants Ustilago maydis. Thus, it is concluded that Pseudozyma species have likely retained a suite of effectors, which hints at the possibility that Pseudozyma species have kept an unknown plant pathogenic stage for sexual recombination. However, it cannot be excluded that these effectors might also have positive effects also when colonising plant surfaces

    The Ustilago hordei-Barley Interaction is a Versatile System for Characterization of Fungal Effectors

    Get PDF
    Obligate biotrophic fungal pathogens, such as Blumeria graminis and Puccinia graminis, are amongst the most devastating plant pathogens, causing dramatic yield losses in many economically important crops worldwide. However, a lack of reliable tools for the efficient genetic transformation has hampered studies into the molecular basis of their virulence or pathogenicity. In this study, we present the Ustilago hordei-barley pathosystem as a model to characterize effectors from different plant pathogenic fungi. We generate U. hordei solopathogenic strains, which form infectious filaments without the presence of a compatible mating partner. Solopathogenic strains are suitable for heterologous expression system for fungal virulence factors. A highly efficient Crispr/Cas9 gene editing system is made available for U. hordei. In addition, U. hordei infection structures during barley colonization are analyzed using transmission electron microscopy, showing that U. hordei forms intracellular infection structures sharing high similarity to haustoria formed by obligate rust and powdery mildew fungi. Thus, U. hordei has high potential as a fungal expression platform for functional studies of heterologous effector proteins in barley

    Molecular Interactions Between Smut Fungi and Their Host Plants

    No full text
    Smut fungi are a large group of biotrophic plant pathogens that infect mostly monocot species, including economically relevant cereal crops. For years, Ustilago maydis has stood out as the model system to study the genetics and cell biology of smut fungi as well as the pathogenic development of biotrophic plant pathogens. The identification and functional characterization of secreted effectors and their role in virulence have particularly been driven forward using the U. maydis-maize pathosystem. Today, advancing tools for additional smut fungi such as Ustilago hordei and Sporisorium reilianum, as well as an increasing number of available genome sequences, provide excellent opportunities to investigate in parallel the effector function and evolution associated with different lifestyles and host specificities. In addition, genome analyses revealed similarities in the genomic signature between pathogenic smuts and epiphytic Pseudozyma species. This review elaborates on how knowledge about fungal lifestyles, genome biology, and functional effector biology has helped in understanding the biology of this important group of fungal pathogens. We highlight the contribution of the U. maydis model system but also discuss the differences from other smut fungi, which raises the importance of comparative genomic and genetic analyses in future research
    corecore