4 research outputs found
Group field theory formulation of 3d quantum gravity coupled to matter fields
We present a new group field theory describing 3d Riemannian quantum gravity
coupled to matter fields for any choice of spin and mass. The perturbative
expansion of the partition function produces fat graphs colored with SU(2)
algebraic data, from which one can reconstruct at once a 3-dimensional
simplicial complex representing spacetime and its geometry, like in the
Ponzano-Regge formulation of pure 3d quantum gravity, and the Feynman graphs
for the matter fields. The model then assigns quantum amplitudes to these fat
graphs given by spin foam models for gravity coupled to interacting massive
spinning point particles, whose properties we discuss.Comment: RevTeX; 28 pages, 21 figure
A new look at loop quantum gravity
I describe a possible perspective on the current state of loop quantum
gravity, at the light of the developments of the last years. I point out that a
theory is now available, having a well-defined background-independent
kinematics and a dynamics allowing transition amplitudes to be computed
explicitly in different regimes. I underline the fact that the dynamics can be
given in terms of a simple vertex function, largely determined by locality,
diffeomorphism invariance and local Lorentz invariance. I emphasize the
importance of approximations. I list open problems.Comment: 15 pages, 5 figure
The Spin Foam Approach to Quantum Gravity
This article reviews the present status of the spin foam approach to the
quantization of gravity. Special attention is payed to the pedagogical
presentation of the recently introduced new models for four dimensional quantum
gravity. The models are motivated by a suitable implementation of the path
integral quantization of the Plebanski formulation of gravity on a simplicial
regularization. The article also includes a self-contained treatment of the 2+1
gravity. The simple nature of the latter provides the basis and a perspective
for the analysis of both conceptual and technical issues that remain open in
four dimensions.Comment: To appear in Living Reviews in Relativit