1,116 research outputs found

    Stopping in central Pb + Pb collisions at SPS energies and beyond

    Full text link
    We investigate stopping and baryon transport in central relativistic Pb + Pb and Au + Au collisions. At energies reached at the CERN Super Proton Synchrotron [sqrt(s_NN) = 6.3-17.3 GeV] and at RHIC (62.4 GeV), we determine the fragmentation-peak positions from the data. The resulting linear growth of the peak positions with beam rapidity is in agreement with our results from a QCD-based approach that accounts for gluon saturation. No discontinuities in the net-proton fragmentation peak positions occur in the expected transition region from partons to hadrons at 6-10 GeV.Comment: 5 pages, 3 figures, 1 table. Figures updated, table shortened, 1 reference adde

    Influence of the pion-nucleon interaction on the collective pion flow in heavy ion reactions

    Get PDF
    We investigate the influence of the real part of the in-medium pion optical potential on the pion dynamics in intermediate energy heavy ion reactions at 1 GeV/A. For different models, i.e. a phenomenological model and the Δ\Delta--hole model, a pionic potential is extracted from the dispersion relation and used in Quantum Molecular Dynamics calculations. In addition with the inelastic scattering processes we thus take care of both, real and imaginary part of the pion optical potential. A strong influence of the real pionic potential on the pion in-plane flow is observed. In general such a potential has the tendency to reduce the anticorrelation of pion and nucleon flow in non-central collisions.Comment: 12 pages Latex, 4 PS-figure

    A Cone Jet-Finding Algorithm for Heavy-Ion Collisions at LHC Energies

    Get PDF
    Standard jet finding techniques used in elementary particle collisions have not been successful in the high track density of heavy-ion collisions. This paper describes a modified cone-type jet finding algorithm developed for the complex environment of heavy-ion collisions. The primary modification to the algorithm is the evaluation and subtraction of the large background energy, arising from uncorrelated soft hadrons, in each collision. A detailed analysis of the background energy and its event-by-event fluctuations has been performed on simulated data, and a method developed to estimate the background energy inside the jet cone from the measured energy outside the cone on an event-by-event basis. The algorithm has been tested using Monte-Carlo simulations of Pb+Pb collisions at s=5.5\sqrt{s}=5.5 TeV for the ALICE detector at the LHC. The algorithm can reconstruct jets with a transverse energy of 50 GeV and above with an energy resolution of 30\sim30%.Comment: 13 pages, 7 figure

    Observing Quark-Gluon Plasma with Strange Hadrons

    Full text link
    We review the methods and results obtained in an analysis of the experimental heavy ion collision research program at nuclear beam energy of 160-200A GeV. We study strange, and more generally, hadronic particle production experimental data. We discuss present expectations concerning how these observables will perform at other collision energies. We also present the dynamical theory of strangeness production and apply it to show that it agrees with available experimental results. We describe strange hadron production from the baryon-poor quark-gluon phase formed at much higher reaction energies, where the abundance of strange baryons and antibaryons exceeds that of nonstrange baryons and antibaryons.Comment: 39 journal pages (155kb text), 8 postscript figures, 8 table

    The effects of nonextensive statistics on fluctuations investigated in event-by-event analysis of data

    Full text link
    We investigate the effect of nonextensive statistics as applied to the chemical fluctuations in high-energy nuclear collisions discussed recently using the event-by-event analysis of data. It turns out that very minuite nonextensitivity changes drastically the expected experimental output for the fluctuation measure. This results is in agreement with similar studies of nonextensity performed recently for the transverse momentum fluctuations in the same reactions.Comment: Revised version, to be published in J. Phys. G (2000

    Resonances and fluctuations in the statistical model

    Full text link
    We describe how the study of resonances and fluctuations can help constrain the thermal and chemical freezeout properties of the fireball created in heavy ion collisions. This review is based on [1-5].Comment: Proceedings,"Hadronic resonance production in heavy ion and elementary collisions" UT Austin, March 5-7 201

    SPS energy scan results and physics prospects at FAIR

    Full text link
    Experimental studies of nucleus-nucleus collisions in the whole SPS energy range are reviewed. Selected topics such as statistical properties of the hadronic phase, strangeness production, fluctuations and correlations are discussed with regard to information on the onset of deconfinement and the critical point of strongly interacting matter. In spite of the very interesting results obtained in particular at the low SPS energies, additional data including rare probes such as charmed particles and di-leptons are required for a precise understanding of the underlying physics. An outlook about prospects and capabilities of upcoming experiments in this interesting energy region at RHIC, SPS, and in particular with CBM at FAIR, is given.Comment: 8 pages, 8 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Statistical hadronization phenomenology in K/πK/\pi fluctuations at ultra-relativistic energies

    Full text link
    We discuss the information that can be obtained from an analysis of fluctuations in heavy ion collisions within the context of the statistical model of particle production. We then examine the recently published experimental data on ratio fluctuations, and use it to obtain constraints on the statistical properties (physically relevant ensemble, degree of chemical equilibration, scaling across energies and system sizes) and freeze-out dynamics (amount of reinteraction between chemical and thermal freeze-out) of the system.Comment: Proceedings, SQM2009. Fig. 4, the main results figure, was wrong due to editing mistake, now correcte

    Regulation of CD1 Antigen-presenting Complex Stability

    Get PDF
    For major histocompatibility complex class I and II molecules, the binding of specific peptide antigens is essential for assembly and trafficking and is at the center of their quality control mechanism. However, the role of lipid antigen binding in stabilization and quality control of CD1 heavy chain (HC).beta(2)-microglobulin (beta(2)m) complexes is unclear. Furthermore, the distinct trafficking and loading routes of CD1 proteins take them from mildly acidic pH in early endososmal compartments (pH 6.0) to markedly acidic pH in lysosomes (pH 5.0) and back to neutral pH of the cell surface (pH 7.4). Here, we present evidence that the stability of each CD1 HC.beta(2)m complex is determined by the distinct pH optima identical to that of the intracellular compartments in which each CD1 isoform resides. Although stable at acidic endosomal pH, complexes are only stable at cell surface pH 7.4 when bound to specific lipid antigens. The proposed model outlines a quality control program that allows lipid exchange at low endosomal pH without dissociation of the CD1 HC.beta(2)m complex and then stabilizes the antigen-loaded complex at neutral pH at the cell surface

    How large is "large NcN_c" for Nuclear matter?

    Full text link
    We argue that a so far neglected dimensionless scale, the number of neighbors in a closely packed system, is relevant for the convergence of the large NcN_c expansion at high chemical potential. It is only when the number of colors is large w.r.t. this new scale (\sim \order{10}) that a convergent large NcN_c limit is reached. This provides an explanation as to why the large NcN_c expansion, qualitatively successful in in vacuum QCD, fails to describe high baryo-chemical potential systems, such as nuclear matter. It also means that phenomenological claims about high density matter based on large NcN_c extrapolations should be treated with caution.Comment: Proceedings of CPOD2010 conference, in Dubna. Results based on Phys.Rev.C82, 055202 (2010), http://arxiv.org/abs/1006.247
    corecore