23 research outputs found

    The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells

    Get PDF
    The transcription factor BATF is required for interleukin 17 (IL-17)-producing helper T cell (TH17) and follicular helper T cell (TFH) differentiation. Here, we show that BATF also has a fundamental role in regulating effector CD8+ T cell differentiation. BATF-deficient CD8+ T cells show profound defects in effector expansion and undergo proliferative and metabolic catastrophe early after antigen encounter. BATF, together with IRF4 and Jun proteins, binds to and promotes early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors, while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies TCR-dependent transcription factor expression and augments inflammatory signal propagation but restrains effector gene expression. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved

    Inhibitory Receptors on Lymphocytes: Insights from Infections

    No full text

    The interferon paradox: can inhibiting an antiviral mechanism advance an HIV cure?

    No full text
    While antiretroviral therapy (ART) has improved the quality of life and increased the life span of many HIV-infected individuals, this therapeutic strategy has several limitations, including a lack of efficacy in fully restoring immune function and a requirement for life-long treatment. Two studies in this issue of the JCI use a humanized mouse model and demonstrate that type I interferon (IFN) is induced early during HIV infection and that type I IFN–associated gene signatures persist, even during ART. Importantly, blockade of type I IFN improved immune function, reduced the HIV reservoir, and caused a delay in viral rebound after ART interruption. Together, these two studies support further evaluation of IFN blockade as a supplement to ART

    A cytotoxic-skewed immune set point predicts low neutralizing antibody levels after Zika virus infection.

    No full text
    Although generating high neutralizing antibody levels is a key component of protective immunity after acute viral infection or vaccination, little is known about why some individuals generate high versus low neutralizing antibody titers. Here, we leverage the high-dimensional single-cell profiling capacity of mass cytometry to characterize the longitudinal cellular immune response to Zika virus (ZIKV) infection in viremic blood donors in Puerto Rico. During acute ZIKV infection, we identify widely coordinated responses across innate and adaptive immune cell lineages. High frequencies of multiple activated cell types during acute infection are associated with high titers of ZIKV neutralizing antibodies 6 months post-infection, while stable immune features suggesting a cytotoxic-skewed immune set point are associated with low titers. Our study offers insight into the coordination of immune responses and identifies candidate cellular biomarkers that may offer predictive value in vaccine efficacy trials aimed at inducing high levels of antiviral neutralizing antibodies
    corecore