512 research outputs found
The zeta function on the critical line: Numerical evidence for moments and random matrix theory models
Results of extensive computations of moments of the Riemann zeta function on
the critical line are presented. Calculated values are compared with
predictions motivated by random matrix theory. The results can help in deciding
between those and competing predictions. It is shown that for high moments and
at large heights, the variability of moment values over adjacent intervals is
substantial, even when those intervals are long, as long as a block containing
10^9 zeros near zero number 10^23. More than anything else, the variability
illustrates the limits of what one can learn about the zeta function from
numerical evidence.
It is shown the rate of decline of extreme values of the moments is modelled
relatively well by power laws. Also, some long range correlations in the values
of the second moment, as well as asymptotic oscillations in the values of the
shifted fourth moment, are found.
The computations described here relied on several representations of the zeta
function. The numerical comparison of their effectiveness that is presented is
of independent interest, for future large scale computations.Comment: 31 pages, 10 figures, 19 table
Numerical study of the derivative of the Riemann zeta function at zeros
The derivative of the Riemann zeta function was computed numerically on
several large sets of zeros at large heights. Comparisons to known and
conjectured asymptotics are presented.Comment: 13 pages, 5 figures; minor typos fixe
Exact asymptotics of monomer-dimer model on rectangular semi-infinite lattices
By using the asymptotic theory of Pemantle and Wilson, exact asymptotic
expansions of the free energy of the monomer-dimer model on rectangular lattices in terms of dimer density are obtained for small values
of , at both high and low dimer density limits. In the high dimer density
limit, the theoretical results confirm the dependence of the free energy on the
parity of , a result obtained previously by computational methods. In the
low dimer density limit, the free energy on a cylinder
lattice strip has exactly the same first terms in the series expansion as
that of infinite lattice.Comment: 9 pages, 6 table
On the existence of optimum cyclic burst-correcting codes
It is shown that for each integer b >= 1 infinitely many optimum cyclic b-burst-correcting codes exist, i.e., codes whose length n, redundancy r, and burst-correcting capability b, satisfy n = 2^{r-b+1} - 1. Some optimum codes for b = 3, 4, and 5 are also studied in detail
Quenched Averages for self-avoiding walks and polygons on deterministic fractals
We study rooted self avoiding polygons and self avoiding walks on
deterministic fractal lattices of finite ramification index. Different sites on
such lattices are not equivalent, and the number of rooted open walks W_n(S),
and rooted self-avoiding polygons P_n(S) of n steps depend on the root S. We
use exact recursion equations on the fractal to determine the generating
functions for P_n(S), and W_n(S) for an arbitrary point S on the lattice. These
are used to compute the averages and over different positions of S. We find that the connectivity constant
, and the radius of gyration exponent are the same for the annealed
and quenched averages. However, , and , where the exponents
and take values different from the annealed case. These
are expressed as the Lyapunov exponents of random product of finite-dimensional
matrices. For the 3-simplex lattice, our numerical estimation gives ; and , to be
compared with the annealed values and .Comment: 17 pages, 10 figures, submitted to Journal of Statistical Physic
Power-Law Distributions in a Two-sided Market and Net Neutrality
"Net neutrality" often refers to the policy dictating that an Internet
service provider (ISP) cannot charge content providers (CPs) for delivering
their content to consumers. Many past quantitative models designed to determine
whether net neutrality is a good idea have been rather equivocal in their
conclusions. Here we propose a very simple two-sided market model, in which the
types of the consumers and the CPs are {\em power-law distributed} --- a kind
of distribution known to often arise precisely in connection with
Internet-related phenomena. We derive mostly analytical, closed-form results
for several regimes: (a) Net neutrality, (b) social optimum, (c) maximum
revenue by the ISP, or (d) maximum ISP revenue under quality differentiation.
One unexpected conclusion is that (a) and (b) will differ significantly, unless
average CP productivity is very high
Scale invariant correlations and the distribution of prime numbers
Negative correlations in the distribution of prime numbers are found to
display a scale invariance. This occurs in conjunction with a nonstationary
behavior. We compare the prime number series to a type of fractional Brownian
motion which incorporates both the scale invariance and the nonstationary
behavior. Interesting discrepancies remain. The scale invariance also appears
to imply the Riemann hypothesis and we study the use of the former as a test of
the latter.Comment: 13 pages, 8 figures, version to appear in J. Phys.
Towards a common thread in Complexity: an accuracy-based approach
The complexity of a system, in general, makes it difficult to determine some
or almost all matrix elements of its operators. The lack of accuracy acts as a
source of randomness for the matrix elements which are also subjected to an
external potential due to existing system conditions. The fluctuation of
accuracy due to varying system-conditions leads to a diffusion of the matrix
elements. We show that, for the single well potentials, the diffusion can be
described by a common mathematical formulation where system information enters
through a single parameter. This further leads to a characterization of
physical properties by an infinite range of single parametric universality
classes
Some remarks on the visible points of a lattice
We comment on the set of visible points of a lattice and its Fourier
transform, thus continuing and generalizing previous work by Schroeder and
Mosseri. A closed formula in terms of Dirichlet series is obtained for the
Bragg part of the Fourier transform. We compare this calculation with the
outcome of an optical Fourier transform of the visible points of the 2D square
lattice.Comment: 9 pages, 3 eps-figures, 1 jpeg-figure; updated version; another
article (by M. Baake, R. V. Moody and P. A. B. Pleasants) with the complete
solution of the spectral problem will follow soon (see math.MG/9906132
- …
