512 research outputs found

    The zeta function on the critical line: Numerical evidence for moments and random matrix theory models

    Full text link
    Results of extensive computations of moments of the Riemann zeta function on the critical line are presented. Calculated values are compared with predictions motivated by random matrix theory. The results can help in deciding between those and competing predictions. It is shown that for high moments and at large heights, the variability of moment values over adjacent intervals is substantial, even when those intervals are long, as long as a block containing 10^9 zeros near zero number 10^23. More than anything else, the variability illustrates the limits of what one can learn about the zeta function from numerical evidence. It is shown the rate of decline of extreme values of the moments is modelled relatively well by power laws. Also, some long range correlations in the values of the second moment, as well as asymptotic oscillations in the values of the shifted fourth moment, are found. The computations described here relied on several representations of the zeta function. The numerical comparison of their effectiveness that is presented is of independent interest, for future large scale computations.Comment: 31 pages, 10 figures, 19 table

    Numerical study of the derivative of the Riemann zeta function at zeros

    Get PDF
    The derivative of the Riemann zeta function was computed numerically on several large sets of zeros at large heights. Comparisons to known and conjectured asymptotics are presented.Comment: 13 pages, 5 figures; minor typos fixe

    Exact asymptotics of monomer-dimer model on rectangular semi-infinite lattices

    Full text link
    By using the asymptotic theory of Pemantle and Wilson, exact asymptotic expansions of the free energy of the monomer-dimer model on rectangular n×n \times \infty lattices in terms of dimer density are obtained for small values of nn, at both high and low dimer density limits. In the high dimer density limit, the theoretical results confirm the dependence of the free energy on the parity of nn, a result obtained previously by computational methods. In the low dimer density limit, the free energy on a cylinder n×n \times \infty lattice strip has exactly the same first nn terms in the series expansion as that of infinite ×\infty \times \infty lattice.Comment: 9 pages, 6 table

    On the existence of optimum cyclic burst-correcting codes

    Get PDF
    It is shown that for each integer b >= 1 infinitely many optimum cyclic b-burst-correcting codes exist, i.e., codes whose length n, redundancy r, and burst-correcting capability b, satisfy n = 2^{r-b+1} - 1. Some optimum codes for b = 3, 4, and 5 are also studied in detail

    Quenched Averages for self-avoiding walks and polygons on deterministic fractals

    Full text link
    We study rooted self avoiding polygons and self avoiding walks on deterministic fractal lattices of finite ramification index. Different sites on such lattices are not equivalent, and the number of rooted open walks W_n(S), and rooted self-avoiding polygons P_n(S) of n steps depend on the root S. We use exact recursion equations on the fractal to determine the generating functions for P_n(S), and W_n(S) for an arbitrary point S on the lattice. These are used to compute the averages ,,, , and <logWn(S)><log W_n(S)> over different positions of S. We find that the connectivity constant μ\mu, and the radius of gyration exponent ν\nu are the same for the annealed and quenched averages. However,  nlogμ+(αq2)logn ~ n log \mu + (\alpha_q -2) log n, and  nlogμ+(γq1)logn ~ n log \mu + (\gamma_q -1)log n, where the exponents αq\alpha_q and γq\gamma_q take values different from the annealed case. These are expressed as the Lyapunov exponents of random product of finite-dimensional matrices. For the 3-simplex lattice, our numerical estimation gives αq0.72837±0.00001 \alpha_q \simeq 0.72837 \pm 0.00001; and γq1.37501±0.00003\gamma_q \simeq 1.37501 \pm 0.00003, to be compared with the annealed values αa=0.73421\alpha_a = 0.73421 and γa=1.37522\gamma_a = 1.37522.Comment: 17 pages, 10 figures, submitted to Journal of Statistical Physic

    Power-Law Distributions in a Two-sided Market and Net Neutrality

    Full text link
    "Net neutrality" often refers to the policy dictating that an Internet service provider (ISP) cannot charge content providers (CPs) for delivering their content to consumers. Many past quantitative models designed to determine whether net neutrality is a good idea have been rather equivocal in their conclusions. Here we propose a very simple two-sided market model, in which the types of the consumers and the CPs are {\em power-law distributed} --- a kind of distribution known to often arise precisely in connection with Internet-related phenomena. We derive mostly analytical, closed-form results for several regimes: (a) Net neutrality, (b) social optimum, (c) maximum revenue by the ISP, or (d) maximum ISP revenue under quality differentiation. One unexpected conclusion is that (a) and (b) will differ significantly, unless average CP productivity is very high

    Scale invariant correlations and the distribution of prime numbers

    Full text link
    Negative correlations in the distribution of prime numbers are found to display a scale invariance. This occurs in conjunction with a nonstationary behavior. We compare the prime number series to a type of fractional Brownian motion which incorporates both the scale invariance and the nonstationary behavior. Interesting discrepancies remain. The scale invariance also appears to imply the Riemann hypothesis and we study the use of the former as a test of the latter.Comment: 13 pages, 8 figures, version to appear in J. Phys.

    Towards a common thread in Complexity: an accuracy-based approach

    Full text link
    The complexity of a system, in general, makes it difficult to determine some or almost all matrix elements of its operators. The lack of accuracy acts as a source of randomness for the matrix elements which are also subjected to an external potential due to existing system conditions. The fluctuation of accuracy due to varying system-conditions leads to a diffusion of the matrix elements. We show that, for the single well potentials, the diffusion can be described by a common mathematical formulation where system information enters through a single parameter. This further leads to a characterization of physical properties by an infinite range of single parametric universality classes

    Some remarks on the visible points of a lattice

    Get PDF
    We comment on the set of visible points of a lattice and its Fourier transform, thus continuing and generalizing previous work by Schroeder and Mosseri. A closed formula in terms of Dirichlet series is obtained for the Bragg part of the Fourier transform. We compare this calculation with the outcome of an optical Fourier transform of the visible points of the 2D square lattice.Comment: 9 pages, 3 eps-figures, 1 jpeg-figure; updated version; another article (by M. Baake, R. V. Moody and P. A. B. Pleasants) with the complete solution of the spectral problem will follow soon (see math.MG/9906132
    corecore