4 research outputs found

    Braneworld Cosmology in (Anti)--de Sitter Einstein--Gauss--Bonnet--Maxwell Gravity

    Get PDF
    Braneworld cosmology for a domain wall embedded in the charged (Anti)-de Sitter-Schwarzschildblack hole of the five--dimensional Einstein-Gauss-Bonnet-Maxwell theory is considered. The effective Friedmann equation for the brane is derived by introducing the necessary surface counterterms required for a well-defined variational principlein the Gauss--Bonnet theory and for the finiteness of the bulk space. The asymptotic dynamics of the brane cosmology is determined and it is found that solutions with vanishingly small spatial volume are unphysical. The finiteness of the bulk action is related to the vanishing of the effective cosmological constant on the brane. An analogy between the Friedmann equation and a generalized Cardy--Verlinde formula is drawn.Comment: LaTex file 28 pages, typos corrected, one reference is adde

    Comissioning of the linear accelerator-injector at the TNK facility

    No full text
    The industrial storage facility has been developed and manufactured at the Budker INP SB RAS. It contains an 80 MeV electron linear accelerator-injector and two electron storage rings: the lesser 450 MeV booster ring and the main 2.5 GeV storage ring. In 2002, the work on the accelerator assembling was begun. On December, 25 this year the accelerator was started up, and the current at the linear accelerator output was obtained. The linear accelerator schematic together with a description of the 6 meter long accelerating DAW structure which operates at 2.8 GHz, are presented in the paper. The first results of the accelerator start-up are as follows: the accelerated electron current of ~50 mA with the energy of ~55...60 MeV.Технологічний накопичувальний комплекс був спроектований і виготовлений у ІЯФ ім. Г.І. Будкера СВ РАН. Він містить у собі інжектор–лінійний прискорювач електронів з енергією до 80 МеВ і два накопичувачі електронів: малий накопичувач–бустер на енергію 450 МеВ і основний накопичувач на енергію 2.5 ГеВ. Приводяться функціональна схема лінійного прискорювача й опис конструкції прискорюючої структури із шайбами і діафрагмами довжиною 6 м, що працює на частоті 2.8 ГГц.Представлено перші результати запуску прискорювача: отриманий прискорений струм електронів ~50 мА з енергією ~(55...60) МеВ.Технологический накопительный комплекс был спроектирован и изготовлен в ИЯФ им. Г.И. Будкера СО РАН. Он включает в себя инжектор–линейный ускоритель электронов с энергией до 80 МэВ и два накопителя электронов: малый накопитель–бустер на энергию 450 МэВ и основной накопитель на энергию 2.5 ГэВ. Приводятся функциональная схема линейного ускорителя и описание конструкции ускоряющей структуры с шайбами и диафрагмами длиной 6 метров, работающей на частоте 2.8 ГГц. Представлены первые результаты запуска ускорителя: получен ускоренный ток электронов ~50 мA с энергией ~(55...60) МэВ

    Complex Aerosol Experiment in Western Siberia (April – October 2013)

    No full text
    The primary project objective was to accomplish the Complex Aerosol Experiment, during which the aerosol properties should be measured in the near-ground layer and free atmosphere. Three measurement cycles were performed during the project implementation: in spring period (April), when the maximum of aerosol generation is observed; in summer (July), when atmospheric boundary layer height and mixing layer height are maximal; and in late summer – early autumn (October), when the secondary particle nucleation period is recorded. Numerical calculations were compared with measurements of fluxes of downward solar radiation. It was shown that the relative differences between model and experimental values of fluxes of direct and total radiation, on the average, do not exceed 1% and 3% respectively

    Complex Aerosol Experiment in Western Siberia (April – October 2013)

    No full text
    The primary project objective was to accomplish the Complex Aerosol Experiment, during which the aerosol properties should be measured in the near-ground layer and free atmosphere. Three measurement cycles were performed during the project implementation: in spring period (April), when the maximum of aerosol generation is observed; in summer (July), when atmospheric boundary layer height and mixing layer height are maximal; and in late summer – early autumn (October), when the secondary particle nucleation period is recorded. Numerical calculations were compared with measurements of fluxes of downward solar radiation. It was shown that the relative differences between model and experimental values of fluxes of direct and total radiation, on the average, do not exceed 1% and 3% respectively
    corecore