300 research outputs found

    Differential Cyclic Voltammetry - a Novel Technique for Selective and Simultaneous Detection using Redox Cycling Based Sensors

    Get PDF
    Redox cycling (RC) is an effect that is used to amplify electrochemical signals. However, traditional techniques such as cyclic voltammetry (CV) do not provide clear insight for a mixture of multiple redox couples while RC is applied. Thus, we have developed a new measurement technique which delivers electrochemical spectra of all reversible redox couples present based on concentrations and standard potentials. This technique has been named differential cyclic voltammetry (DCV). We have fabricated micrometer-sized interdigitated electrode (IDE) sensors to conduct DCV measurements in mixtures of 1mM catechol and 4mM [Ru(NH3)6]Cl3. To simulate the electrochemical behavior of these sensors we have also developed a finite element model (FEM) in Comsol®. The\ud experimental data corresponds to the calculated spectra obtained from simulations. Additionally, the measured spectra can be used to easily derive standard potentials and concentrations simultaneously and selectively.\u

    A closed form for the electrostatic interaction between two rod-like charged objects

    Full text link
    We have calculated the electrostatic interaction between two rod-like charged objects with arbitrary orientations in three dimensions. we obtained a closed form formula expressing the interaction energy in terms of the separation distance between the centers of the two rod-like objects, rr, their lengths (denoted by 2l12l_1 and 2l22l_2), and their relative orientations (indicated by θ\theta and ϕ\phi). When the objects have the same length (2l1=2l2=l2l_1=2l_2=l), for particular values of separations, i.e for r0.8lr\leq0.8 l, two types of minimum are appeared in the interaction energy with respect to θ\theta. By employing the closed form formula and introducing a scaled temperature tt, we have also studied the thermodynamic properties of a one dimensional system of rod-like charged objects. For different separation distances, the dependence of the specific heat of the system to the scaled temperature has been studied. It is found that for r<0.8lr<0.8 l, the specific heat has a maximum.Comment: 10 pages, 9 figures, 1 table, Accepted by J. Phys.: Condens. Matte

    Electrochemistry-on-chip for on-line conversions in drug metabolism studies

    Get PDF
    We have designed an integrated 3-electrode electrochemical cell on-chip with high analyte conversion rates for use in drug metabolism studies. The electrochemical cell contains platinum working and counter electrodes and an iridium oxide pseudo-reference electrode. The pseudo-reference electrode has a pH sensitivity of −52 mV/s, and thus will provide a constant potential in solutions with known and constant pH. The average drift of the iridium oxide electrode is below 5 mV for a typical 15 min conversion experiment. We have been able to mimic the oxidative drug metabolism reactions catalysed by enzymes of the cytochrome P-450 family, normally occurring in the human body. With the chip, the different reaction products of both rat liver cell microsome and human liver cell microsome incubations have been observe

    Phase separation in mixtures of colloids and long ideal polymer coils

    Full text link
    Colloidal suspensions with free polymer coils which are larger than the colloidal particles are considered. The polymer-colloid interaction is modeled by an extension of the Asakura-Oosawa model. Phase separation occurs into dilute and dense fluid phases of colloidal particles when polymer is added. The critical density of this transition tends to zero as the size of the polymer coils diverges.Comment: 5 pages, 3 figure

    Flory-Huggins theory for athermal mixtures of hard spheres and larger flexible polymers

    Full text link
    A simple analytic theory for mixtures of hard spheres and larger polymers with excluded volume interactions is developed. The mixture is shown to exhibit extensive immiscibility. For large polymers with strong excluded volume interactions, the density of monomers at the critical point for demixing decreases as one over the square root of the length of the polymer, while the density of spheres tends to a constant. This is very different to the behaviour of mixtures of hard spheres and ideal polymers, these mixtures although even less miscible than those with polymers with excluded volume interactions, have a much higher polymer density at the critical point of demixing. The theory applies to the complete range of mixtures of spheres with flexible polymers, from those with strong excluded volume interactions to ideal polymers.Comment: 9 pages, 4 figure

    Equation of state for polymer liquid crystals: theory and experiment

    Full text link
    The first part of this paper develops a theory for the free energy of lyotropic polymer nematic liquid crystals. We use a continuum model with macroscopic elastic moduli for a polymer nematic phase. By evaluating the partition function, considering only harmonic fluctuations, we derive an expression for the free energy of the system. We find that the configurational entropic part of the free energy enhances the effective repulsive interactions between the chains. This configurational contribution goes as the fourth root of the direct interactions. Enhancement originates from the coupling between bending fluctuations and the compressibility of the nematic array normal to the average director. In the second part of the paper we use osmotic stress to measure the equation of state for DNA liquid crystals in 0.1M to 1M NaCl solutions. These measurements cover 5 orders of magnitude in DNA osmotic pressure. At high osmotic pressures the equation of state, dominated by exponentially decaying hydration repulsion, is independent of the ionic strength. At lower pressures the equation of state is dominated by fluctuation enhanced electrostatic double layer repulsion. The measured equation of state for DNA fits well with our theory for all salt concentrations. We are able to extract the strength of the direct electrostatic double layer repulsion. This is a new and alternative way of measuring effective charge densities along semiflexible polyelectrolytes.Comment: text + 5 figures. Submitted to PR

    Interfacial tension and nucleation in mixtures of colloids and long ideal polymer coils

    Full text link
    Mixtures of ideal polymers with hard spheres whose diameters are smaller than the radius of gyration of the polymer, exhibit extensive immiscibility. The interfacial tension between demixed phases of these mixtures is estimated, as is the barrier to nucleation. The barrier is found to scale linearly with the radius of the polymer, causing it to become large for large polymers. Thus for large polymers nucleation is suppressed and phase separation proceeds via spinodal decomposition, as it does in polymer blends.Comment: 4 pages (v2 includes discussion of the scaling of the interfacial tension along the coexistence curve and its relation to the Ginzburg criterion

    Transition between Two Regimes Describing Internal Fluctuation of DNA in a Nanochannel

    Get PDF
    We measure the thermal fluctuation of the internal segments of a piece of DNA confined in a nanochannel about 50100 nm wide. This local thermodynamic property is key to accurate measurement of distances in genomic analysis. For DNA in 100 nm channels, we observe a critical length scale 10 m for the mean extension of internal segments, below which the de Gennes' theory describes the fluctuations with no fitting parameters, and above which the fluctuation data falls into Odijk's deflection theory regime. By analyzing the probability distributions of the extensions of the internal segments, we infer that folded structures of length 150250 nm, separated by 10 m exist in the confined DNA during the transition between the two regimes. For 50 nm channels we find that the fluctuation is significantly reduced since the Odijk regime appears earlier. This is critical for genomic analysis. We further propose a more detailed theory based on small fluctuations and incorporating the effects of confinement to explicitly calculate the statistical properties of the internal fluctuations. Our theory is applicable to polymers with heterogeneous mechanical properties confined in non-uniform channels. We show that existing theories for the end-to-end extension/fluctuation of polymers can be used to study the internal fluctuations only when the contour length of the polymer is many times larger than its persistence length. Finally, our results suggest that introducing nicks in the DNA will not change its fluctuation behavior when the nick density is below 1 nick per kbp DNA
    corecore