21 research outputs found

    Germinal Center Founder Cells Display Propensity for Apoptosis before Onset of Somatic Mutation

    Get PDF
    B lymphocytes undergo affinity maturation of their antigen receptors within germinal centers. These anatomical structures develop in secondary lymphoid organs from the clonal expansion of a few antigen-specific founder B cells, whose isolation and characterization are reported here. Human germinal center founder cells express the naive B cell markers surface IgM and IgD as well as the germinal center B cell markers CD10 and CD38. They express low levels of Bcl-2, high levels of Fas, and undergo rapid apoptosis in culture. The smaller nonproliferating sIgM+IgD+CD38+ B cells displayed a lower level of somatic mutation in their immunoglobulin variable region genes compared with the large proliferating ones. Unmutated sIgM+IgD+CD38+ tonsillar B cells may thus represent germinal center founder cells in which the program for apoptotic cell death is triggered before the onset of somatic mutation, allowing the selection of the germline antibody repertoire at an early stage

    The Inducible CXCR3 Ligands Control Plasmacytoid Dendritic Cell Responsiveness to the Constitutive Chemokine Stromal Cell–derived Factor 1 (SDF-1)/CXCL12

    Get PDF
    The recruitment of selected dendritic cell (DC) subtypes conditions the class of the immune response. Here we show that the migration of human plasmacytoid DCs (pDCs), the blood natural interferon α–producing cells, is induced upon the collective action of inducible and constitutive chemokines. Despite expression of very high levels of CXCR3, pDCs do not respond efficiently to CXCR3 ligands. However, they migrate in response to the constitutive chemokine stromal cell–derived factor 1 (SDF-1)/CXCL12 and CXCR3 ligands synergize with SDF-1/CXCL12 to induce pDC migration. This synergy reflects a sensitizing effect of CXCR3 ligands, which, independently of a gradient and chemoattraction, decrease by 20–50-fold the threshold of sensitivity to SDF-1/CXCL12. Thus, the ability of the constitutive chemokine SDF-1/CXCL12 to induce pDC recruitment might be controlled by CXCR3 ligands released during inflammation such as in virus infection. SDF-1/CXCL12 and the CXCR3 ligands Mig/CXCL9 and ITAC/CXCL1 display adjacent expression both in secondary lymphoid organs and in inflamed epithelium from virus-induced pathologic lesions. Because pDCs express both the lymph node homing molecule l-selectin and the cutaneous homing molecule cutaneous lymphocyte antigen, the cooperation between inducible CXCR3 ligands and constitutive SDF-1/CXCL12 may regulate recruitment of pDCs either in lymph nodes or at peripheral sites of inflammation

    The Normal Counterpart of IgD Myeloma Cells in Germinal Center Displays Extensively Mutated IgVH Gene, Cμ–Cδ Switch, and λ Light Chain Expression

    Get PDF
    Human myeloma are incurable hematologic cancers of immunoglobulin-secreting plasma cells in bone marrow. Although malignant plasma cells can be almost eradicated from the patient's bone marrow by chemotherapy, drug-resistant myeloma precursor cells persist in an apparently cryptic compartment. Controversy exists as to whether myeloma precursor cells are hematopoietic stem cells, pre–B cells, germinal center (GC) B cells, circulating memory cells, or plasma blasts. This situation reflects what has been a general problem in cancer research for years: how to compare a tumor with its normal counterpart. Although several studies have demonstrated somatically mutated immunoglobulin variable region genes in multiple myeloma, it is unclear if myeloma cells are derived from GCs or post-GC memory B cells. Immunoglobulin (Ig)D-secreting myeloma have two unique immunoglobulin features, including a biased λ light chain expression and a Cμ–Cδ isotype switch. Using surface markers, we have previously isolated a population of surface IgM−IgD+CD38+ GC B cells that carry the most impressive somatic mutation in their IgV genes. Here we show that this population of GC B cells displays the two molecular features of IgD-secreting myeloma cells: a biased λ light chain expression and a Cμ–Cδ isotype switch. The demonstration of these peculiar GC B cells to differentiate into IgD-secreting plasma cells but not memory B cells both in vivo and in vitro suggests that IgD-secreting plasma and myeloma cells are derived from GCs

    Five Human Mature B Cell Subsets

    No full text
    International audienceSecondary lymphoid organs display B lymphocytes at distinct stages of differentiation as a consequence of ongoing antigenic stimulation. In order to understand the molecular mechanisms which regulate B cell differentiation from virgin B cells to either memory B cells or plasma cells, it is important to isolate B cells at different stages during immune responses in vivo. The working model (Fig. 1) is based on many in vivo experiments on the microenvironments of B cell activations (1–3). It predicts 5 mature B cell stages. Bm1 (mature B cell subsets 1) represents virgin B cells; Bm2 ligand selected B cells (4), Bm3 germinal center centroblasts, Bm4 centrocytes and Bm5 memory B cells. Here we report on the identification and isolation of these B cell subsets from human tonsils
    corecore