4 research outputs found

    Misclassification of Plasmodium infections by conventional microscopy and the impact of remedial training on the proficiency of laboratory technicians in species identification.

    Get PDF
    BACKGROUND: Malaria diagnosis is largely dependent on the demonstration of parasites in stained blood films by conventional microscopy. Accurate identification of the infecting Plasmodium species relies on detailed examination of parasite morphological characteristics, such as size, shape, pigment granules, besides the size and shape of the parasitized red blood cells and presence of cell inclusions. This work explores misclassifications of four Plasmodium species by conventional microscopy relative to the proficiency of microscopists and morphological characteristics of the parasites on Giemsa-stained blood films. CASE DESCRIPTION: Ten-day malaria microscopy remedial courses on parasite detection, species identification and parasite counting were conducted for public health and research laboratory personnel. Proficiency in species identification was assessed at the start (pre) and the end (post) of each course using known blood films of Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale and Plasmodium vivax infections with densities ranging from 1,000 to 30,000 parasites/μL. Outcomes were categorized as false negative, positive without speciation, P. falciparum, P. malariae, P. ovale, P. vivax and mixed infections. DISCUSSION AND EVALUATION: Reported findings are based on 1,878 P. falciparum, 483 P. malariae, 581 P. ovale and 438 P. vivax cumulative results collated from 2008 to 2010 remedial courses. Pre-training false negative and positive misclassifications without speciation were significantly lower on P. falciparum infections compared to non-falciparum infections (p < 0.0001). Post-training misclassifications decreased significantly compared to pre- training misclassifications which in turn led to significant improvements in the identification of the four species. However, P. falciparum infections were highly misclassified as mixed infections, P. ovale misclassified as P. vivax and P. vivax similarly misclassified as P. ovale (p < 0.05). CONCLUSION: These findings suggest that the misclassification of malaria species could be a common occurrence especially where non-falciparum infections are involved due to lack of requisite skills in microscopic diagnosis and variations in morphological characteristics within and between Plasmodium species. Remedial training might improve reliability of conventional light microscopy with respect to differentiation of Plasmodium infections

    Establishing a malaria diagnostics centre of excellence in Kisumu, Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria microscopy, while the gold standard for malaria diagnosis, has limitations. Efficacy estimates in drug and vaccine malaria trials are very sensitive to small errors in microscopy endpoints. This fact led to the establishment of a Malaria Diagnostics Centre of Excellence in Kisumu, Kenya. The primary objective was to ensure valid clinical trial and diagnostic test evaluations. Key secondary objectives were technology transfer to host countries, establishment of partnerships, and training of clinical microscopists.</p> <p>Case description</p> <p>A twelve-day "long" and a four-day "short" training course consisting of supervised laboratory practicals, lectures, group discussions, demonstrations, and take home assignments were developed. Well characterized slides were developed and training materials iteratively improved. Objective pre- and post-course evaluations consisted of 30 slides (19 negative, 11 positive) with a density range of 50–660 parasites/μl, a written examination (65 questions), a photographic image examination (30 images of artifacts and species specific characteristics), and a parasite counting examination.</p> <p>Discussion and Evaluation</p> <p>To date, 209 microscopists have participated from 11 countries. Seventy-seven experienced microscopists participated in the "long" courses, including 47 research microscopists. Sensitivity improved by a mean of 14% (CI 9–19%) from 77% baseline (CI 73–81 %), while specificity improved by a mean of 17% (CI 11–23%) from 76% (CI 70–82%) baseline. Twenty-three microscopists who had been selected for a four-day refresher course showed continued improvement with a mean final sensitivity of 95% (CI 91–98%) and specificity of 97% (CI 95–100%). Only 9% of those taking the pre-test in the "long" course achieved a 90% sensitivity and 95% specificity, which increased to 61% of those completing the "short" course. All measures of performance improved substantially across each of the five organization types and in each course offered.</p> <p>Conclusion</p> <p>The data clearly illustrated that false positive and negative malaria smears are a serious problem, even with research microscopists. Training dramatically improved performance. Quality microscopy can be provided by the Centre of Excellence concept. This concept can be extended to other diagnostics of public health importance, and comprehensive disease control strategies.</p
    corecore