23 research outputs found

    London calling: The 5th UK Cellular Microbiology Network Meeting

    Get PDF

    SteC is a Salmonella kinase required for SPI-2-dependent F-actin remodelling

    Get PDF
    Salmonella enterica serovar Typhimurium (S. Typhimurium) replicates inside mammalian cells within membrane-bound compartments called Salmonella-containing vacuoles. Intracellular replication is dependent on the activities of several effector proteins translocated across the vacuolar membrane by the Salmonella pathogenicity island 2 (SPI-2)-type III secretion system (T3SS). This is accompanied by the formation in the vicinity of bacterial vacuoles of an F-actin meshwork, thought to be involved in maintaining the integrity of vacuolar membranes. In this study, we investigated the function of the SPI-2 T3SS effector SteC. An steC mutant strain was not defective for intracellular replication or attenuated for virulence in mice. However, the steC mutant was defective for SPI-2-dependent F-actin meshwork formation in host cells, although the vacuolar membranes surrounding mutant bacteria appeared to be normal. Expression of SteC in fibroblast cells following transfection caused extensive rearrangements of the F-actin cytoskeleton. Sequence analysis identified amino acid similarity between SteC and the human kinase Raf-1. A His-tagged SteC fusion protein had kinase activity in vitro and a point mutant lacking kinase activity was unable to induce F-actin rearrangements in vivo. We conclude that SPI-2-dependent F-actin meshwork formation depends on the kinase activity of SteC, which resembles more closely eukaryotic than prokaryotic kinases

    A Nuclear Export Signal in KHNYN Required for Its Antiviral Activity Evolved as ZAP Emerged in Tetrapods

    Get PDF
    The zinc finger antiviral protein (ZAP) inhibits viral replication by directly binding CpG dinucleotides in cytoplasmic viral RNA to inhibit protein synthesis and target the RNA for degradation. ZAP evolved in tetrapods and there are clear orthologs in reptiles, birds, and mammals. When ZAP emerged, other proteins may have evolved to become cofactors for its antiviral activity. KHNYN is a putative endoribonuclease that is required for ZAP to restrict retroviruses. To determine its evolutionary path after ZAP emerged, we compared KHNYN orthologs in mammals and reptiles to those in fish, which do not encode ZAP. This identified residues in KHNYN that are highly conserved in species that encode ZAP, including several in the CUBAN domain. The CUBAN domain interacts with NEDD8 and Cullin-RING E3 ubiquitin ligases. Deletion of the CUBAN domain decreased KHNYN antiviral activity, increased protein expression and increased nuclear localization. However, mutation of residues required for the CUBAN domain-NEDD8 interaction increased KHNYN abundance but did not affect its antiviral activity or cytoplasmic localization, indicating that Cullin-mediated degradation may control its homeostasis and regulation of protein turnover is separable from its antiviral activity. By contrast, the C-terminal residues in the CUBAN domain form a CRM1-dependent nuclear export signal (NES) that is required for its antiviral activity. Deletion or mutation of the NES increased KHNYN nuclear localization and decreased its interaction with ZAP. The final 2 positions of this NES are not present in fish KHNYN orthologs and we hypothesize their evolution allowed KHNYN to act as a ZAP cofactor. IMPORTANCE The interferon system is part of the innate immune response that inhibits viruses and other pathogens. This system emerged approximately 500 million years ago in early vertebrates. Since then, some genes have evolved to become antiviral interferon-stimulated genes (ISGs) while others evolved so their encoded protein could interact with proteins encoded by ISGs and contribute to their activity. However, this remains poorly characterized. ZAP is an ISG that arose during tetrapod evolution and inhibits viral replication. Because KHNYN interacts with ZAP and is required for its antiviral activity against retroviruses, we conducted an evolutionary analysis to determine how specific amino acids in KHNYN evolved after ZAP emerged. This identified a nuclear export signal that evolved in tetrapods and is required for KHNYN to traffic in the cell and interact with ZAP. Overall, specific residues in KHNYN evolved to allow it to act as a cofactor for ZAP antiviral activity

    Mechanisms of F-actin remodelling by intracellular Salmonella

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Host-encoded sensors of bacteria:Our windows into the microbial world

    No full text

    Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication

    Get PDF
    Additional file 1. Codon modification of nucleotides 22-261 in gag inhibits viral replication in SupT1 cells. SupT1 cells were infected with 10 ng of p24Gag for each indicated virus. The amount of infectious virus present at each time point was measured in TZM-bl cells. This is representative of three independent experiments

    Reprogramming of Cell Death Pathways by Bacterial Effectors as a Widespread Virulence Strategy

    No full text
    The modulation of programmed cell death (PCD) processes during bacterial infections is an evolving arms race between pathogens and their hosts. The initiation of apoptosis, necroptosis, and pyroptosis pathways are essential to immunity against many intracellular and extracellular bacteria. These cellular self-destructive mechanisms are used by the infected host to restrict and eliminate bacterial pathogens. Without a tight regulatory control, host cell death can become a double-edged sword. Inflammatory PCDs contribute to an effective immune response against pathogens, but unregulated inflammation aggravates the damage caused by bacterial infections. Thus, fine-tuning of these pathways is required to resolve infection while preserving the host immune homeostasis. In turn, bacterial pathogens have evolved secreted virulence factors or effector proteins that manipulate PCD pathways to promote infection. In this review, we discuss the importance of controlled cell death in immunity to bacterial infection. We also detail the mechanisms employed by type 3 secreted bacterial effectors to bypass these pathways and their importance in bacterial pathogenesis

    Type III IFNS are commonly induced by bacteria-sensing TLRS and reinforce epithelial barriers during infection

    No full text
    Abstract Type III IFNs (IFN-λs) are secreted factors that are well-known for their antiviral activities. However, their regulation and functions during bacterial infections are unclear. In this article, we report that the regulation of IFN-λ genes did not track with mechanisms that control type I IFN expression in response to TLRs. Whereas type I IFNs were only expressed from TLRs present on endosomes, type III IFNs could be induced by TLRs that reside at the plasma membrane and that detect various bacterial products. The mechanisms that regulate type III IFN gene expression tracked with those that promote inflammatory cytokine and chemokine expression. Importantly, rIFN-λs enhanced epithelial barriers in vitro, preventing transcellular bacteria dissemination. We therefore propose that in addition to their functions in cell-intrinsic antiviral immunity, type III IFNs protect epithelial barrier integrity, an activity that would benefit the host during any infectious encounter.</jats:p
    corecore