20 research outputs found

    C4B null alleles are not associated with genetic polymorphisms in the adjacent gene CYP21A2 in autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research indicates that the etiology of autism has a strong genetic component, yet so far the search for genes that contribute to the disorder, including several whole genome scans, has led to few consistent findings. However, three studies indicate that the complement <it>C4B </it>gene null allele (i.e. the missing or nonfunctional <it>C4B </it>gene) is significantly more frequent in individuals with autism. Due to the close proximity of the <it>CYP21A2 </it>gene to the <it>C4B </it>locus (3 kb) it was decided to examine samples from autistic subjects, including many with known <it>C4B </it>null alleles for common <it>CYP21A2 </it>mutations.</p> <p>Methods</p> <p>Samples from subjects diagnosed with autism and non-autistic controls (controls) previously typed for <it>C4B </it>null alleles were studied. Allele specific polymerase chain reaction (PCR) methods were used to determine 8 of the most common <it>CYP21A2 </it>genetic mutations, known to completely or partially inhibit 21-hydroxylase, the enzyme encoded by the <it>CYP21A2 </it>gene.</p> <p>Results</p> <p>Although the combined autism and control study subjects had 50 <it>C4B </it>null alleles only 15 <it>CYP21A2 </it>mutations were detected in over 2250 genotypes. Eight mutations were detected in the autistic samples and 7 in the controls. The frequency of <it>CYP21A2 </it>mutations was similar between the autism and control samples. Only one individual (autistic) carried a chromosome containing both <it>C4B </it>null allele and <it>CYP21A2 </it>mutations.</p

    Hyperthyroidism and human chorionic gonadotrophin production in gestational trophoblastic disease

    Get PDF
    Background: Gestational trophoblastic disease (GTD) is a rare complication of pregnancy, ranging from molar pregnancy to choriocarcinoma. Patients with persistent disease require treatment with chemotherapy. For the vast majority, prognosis is excellent. Occasionally, GTD is complicated by hyperthyroidism, which may require treatment. This is thought to occur due to molecular mimicry between human chorionic gonadotrophin (HCG) and thyroid-stimulating hormone (TSH), and hence cross-reactivity with the TSH receptor. Hyperthyroidism usually resolves as the GTD is successfully treated and correspondingly HCG levels normalise. Methods: This paper reviews cases of GTD treated over a 5-year period at one of the three UK centres and identifies the prevalence of hyperthyroidism in this population. Four cases with clinical hyperthyroidism are discussed. Results: On review of the 196 patients with gestational trophoblastic neoplasia treated with chemotherapy in Sheffield since 2005, 14 (7%) had biochemical hyperthyroidism. Of these, four had evidence of clinical hyperthyroidism. Conclusion: Concomitant biochemical thyroid disease in patients with GTD is relatively common, and measurement of thyroid function in patients with persistent GTD is, therefore, important. The development of hyperthyroidism is largely influenced by the level of HCG and disease burden, and usually settles with treatment of the persistent GTD. However, rarely the thyroid stimulation can have potentially life-threatening consequences
    corecore