1,998 research outputs found

    CCD Washington photometry of four poorly studied open clusters in the two inner quadrants of the galactic plane

    Full text link
    Complementing our Washington photometric studies on Galactic open clusters (OCs), we now focus on four poorly studied OCs located in the first and fourth Galactic quadrants, namely BH 84, NGC 5381, BH 211 and Czernik 37. We have obtained CCD photometry in the Washington system CC and T1T_1 passbands down to T1T_1 ∼\sim 18.5 magnitudes for these four clusters. Their positions and sizes were determined using the stellar density radial profiles. We derived reddening, distance, age and metallicity of the clusters from extracted (C−T1,T1)(C-T_1,T_1) color-magnitude diagrams (CMDs), using theoretical isochrones computed for the Washington system. There are no previous photometric data in the optical band for BH 84, NGC 5381 and BH 211. The CMDs of the observed clusters show relatively well defined main sequences, except for Czernik 37, wherein significant differential reddening seems to be present. The red giant clump is clearly seen only in BH 211. For this cluster, we estimated the age in (1000−200+260^{+260}_{-200}) Myr, assuming a metallicity of ZZ = 0.019. BH 84 was found to be much older than it was previously believed, while NGC 5381 happened to be much younger than previously reported. The heliocentric distances to these clusters are found to range between 1.4 and 3.4 kpc. BH 84 appears to be located at the solar galactocentric distance, while NGC 5381, BH 211 and Czernik 37 are situated inside the solar ring.Comment: 30 pages, 9 figures, 10 table

    Mode and tempo of the Paleocene-Eocene thermal maximum in an expanded section from the Venetian pre-Alps.

    Get PDF
    The central part of the Piave River valley in the Venetian pre-Alps of NE Italy exposes an expanded and continuous marine sediment succession that encompasses the Paleocene series and the Paleocene to Eocene transition. The Paleocene through lowermost Eocenemsuccession is >100 m thick and was depositednat middle to lower bathyal depths in a hemipelagic, near-continental setting in the central western Tethys. In the Forada section, the Paleocene succession of limestone-marl couplets is sharply interrupted by an ~3.30- m-thick unit of clays and marls (clay marl unit). The very base of this unit represents the biostratigraphic Paleocene-Eocene boundary, and the entire unit coincides with the main carbon isotope excursion of the Paleocene-Eocene thermal maximum event. Concentrations of hematite and biogenic carbonate, δ13C measurements, and abundance of radiolarians, all oscillate in a cyclical fashion and are interpreted to represent precession cycles. The main excursion interval spans fi ve complete cycles, that is, 105 ± 10 k.y. The overlying carbon isotope recovery interval, which is composed of six distinct limestone-marl couplets, is interpreted to represent six precessional cycles with a duration of 126 ± 12 k.y. The entire carbon isotope excursion interval in Forada has a total duration of ~231 ± 22 k.y., which is 5%–10% longer than previous estimates derived from open ocean sites (210–220 k.y.). Geochemical proxies for redox conditions indicate oxygenated conditions before, during, and after the carbon isotope excursion event. The Forada section exhibits a nonstepped sharp decrease in δ13C (−2.35‰) at the base of the clay marl unit. The hemipelagic, near-continental depositional setting of Forada and the sharply elevated sedimentation rates throughout the clay marl unit argue for continuous rather than interrupted deposition and show that the initial nonstepped carbon isotope shift was not caused by a hiatus. A single sample at the base of the unit lacks biogenic carbonate. Preservation of carbonate thereafter improves progressively up-section in the clay marl unit, which is consistent with a prodigiously abrupt and rapid acidifi cation of the oceans followed by a slower, successive deepening of the carbonate compensation depth. Increased sedimentation rates through the clay marl unit (approximately the main interval of the carbon isotope excursion) are consistent with an intensifi ed hydrological cycle driven by supergreenhouse conditions and enhanced weathering and transport of terrigenous material to this near-continental, hemipelagic environment in the central western Tethys. The sharp transition in lithology from the clay marl unit to the overlying limestonemarl couplets in the recovery interval and the coincident shift toward heavier δ13C values suggest that the silicate pump and continental weathering, the cause of the enhanced terrigenous fl ux to Forada, stopped abruptly. This implies that the source of the light CO2 ceased to be added to the ocean-atmosphere system at the top of the clay marl unit

    Effect of vacuum induced nucleation on the final product homogeneity

    Get PDF
    In the field of freeze drying of pharmaceutics the homogeneity of the sublimation flux during drying is fundamental to allow a final product with the same characteristics. Previous studies have shown that the control of freezing stage, in addition to a dramatic reduction of cycle duration, can also improve the homogeneity of the final batch. In this framework, this study is focused on the investigation of the effects of the Vacuum Induced Nucleation control method (modified in a previous work)[1,2] on the final structure of the product. Two aspects will be taken into consideration: the uniformity among vials of the same batch (inter-vial) and the uniformity of the structure along the height of the product (intra-vial). It has to be pointed out that a non-uniform product structure can have an impact on the protein aggregation and redistribution, and cause a partial cake collapse or micro-collapse. This investigation is really useful to define some limits of the control method used in this work

    Vacuum-Induced Surface Freezing for the Freeze-Drying of the Human Growth Hormone: How Does Nucleation Control Affect Protein Stability?

    Get PDF
    Abstract In the present work, the effect of controlled nucleation on the stability of human growth hormone (hGH) during freeze-drying has been investigated. More specifically, the vacuum-induced surface freezing technique has been compared to conventional freezing, both with and without an annealing step. Size exclusion chromatography and cell-based potency assays have been used to characterize the formation of soluble aggregates and the biological activity of hGH, respectively. The results obtained indicate that controlled nucleation has a positive effect on both cycle performance and product homogeneity because of the formation of bigger ice crystals, and characterized by a narrower dimensional distribution. From the point of view of hGH stability, we observed that vacuum-induced surface freezing is not detrimental to the biological activity of the protein, or aggregate formation. In addition, the effect of 2 different formulations, including trehalose or cellobiose, on protein preservation was also considered for this study

    Cooking Particulate Matter: A Systematic Review on Nanoparticle Exposure in the Indoor Cooking Environment

    Get PDF
    Background: Cooking and fuel combustion in the indoor environment are major sources of respirable suspended particulate matter (RSPM), which is an excellent carrier of potentially harmful absorbed inorganic and organic compounds. Chronic exposure to RSPM can lead to acute pulmonary illness, asthma, cardiovascular disease, and lung cancer in people involved in cooking. Despite this, questions remain about the harmfulness of different particulate matter (PM) sources generated during cooking, and the factors influencing PM physico-chemical properties. The most reliable methods for sampling and analyzing cooking emissions remain only partially understood. Objectives: This review aims to comprehensively assess the risks of PM generated during cooking, considering the main sources of PM, PM chemical composition, and strategies for PM physico-chemical analysis. We present the first systematic analysis of PM sources and chemical composition related to cooking. We highlight significant differences between studies using different experimental conditions, with a lack of a standard methodology. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement rules and the Patient, Intervention, Comparison, and Outcome (PICO) strategy for scientific research, three different scientific databases (PubMed, Scopus, and Web of Science) were screened to find scientific articles that measure, collect, and analyze the chemical composition of nanometer-and micrometer-sized PM generated during cooking activities under different conditions. Data are summarized to assess risk, evaluating the main sources and factors influencing PM generation, their chemical composition, and how they have been collected and analyzed in changing experimental conditions. Results: From 2474 search results, there were 55 studies that met our criteria. Overall, the main variable sources of PM in cooking activities relate to the stove and fuel type. The concentration and chemical–physical properties of PM are also strongly influenced by the food and food additive type, food processing type, cooking duration, temperature, and utensils. The most important factor influencing indoor PM concentration is ventilation. The PM generated during cooking activities is composed mainly of elemental carbon (EC) and its derivatives, and the porous structure of PM with high surface-to-volume ratio is a perfect carrier of inorganic and organic matter. Conclusions: This review reveals a growing interest in PM exposure during cooking activities and highlights significant variability in the chemical–physical properties of particles, and thus variable exposure risks. Precise risk characterization improves possible preventive strategies to reduce the risk of indoor pollutant exposure. However, comprehensive PM analysis needs proper sampling and analysis methods which consider all factors influencing the physico-chemical properties of PM in an additive and synergistic way. Our analysis highlights the need for method standardization in PM environmental analyses, to ensure accuracy and allow deeper comparisons between future studies

    Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy.

    Get PDF
    Pegylation of nanoparticles has been widely implemented in the field of drug delivery to prevent macrophage clearance and increase drug accumulation at a target site. However, the shielding effect of polyethylene glycol (PEG) is usually incomplete and transient, due to loss of nanoparticle integrity upon systemic injection. Here, we have synthesized unique PEG-dendron-phospholipid constructs that form super stealth liposomes (SSLs). A \u3b2-glutamic acid dendron anchor was used to attach a PEG chain to several distearoyl phosphoethanolamine lipids, thereby differing from conventional stealth liposomes where a PEG chain is attached to a single phospholipid. This composition was shown to increase liposomal stability, prolong the circulation half-life, improve the biodistribution profile and enhance the anticancer potency of a drug payload (doxorubicin hydrochloride)

    Double nucleus in M83

    Full text link
    M 83 is one of the nearest galaxies with an enhanced nuclear star formation and it presents one of the best opportunities to study the kinematics and physical properties of a circumnuclear starburst. Our three-dimensional spectroscopy data in R band confirm the presence of a secondary nucleus or mass concentration (previously suggested by Thatte and coworkers). We determine the position of this hidden nucleus, which would be more massive than the visible one, and was not detected in the optical HST images due, probably, to the strong dust extinction. The optical nucleus has a mass of 5 x 10^6 M_Sun / sin i (r < 1''.5), and the hidden nucleus, located 3''.9 +/- 0''.5 at the NW (PA 271 +/- 15 deg) of the optical nucleus, would have a mass of 1 x 10^7 M_Sun / sin i (r < 1''.5). The emission line ratio map also unveils the presence of a second circumnuclear ring structure, previously discovered by IR imaging (Elmegreen and coworkers). The data allow us to resolve the behavior of the interstellar medium inside the circumnuclear ring and around the binary mass concentration.Comment: 28 pages, 11 figures. Discussion updated. Published versio

    Recruitment of ethnic minority patients to a cardiac rehabilitation trial: The Birmingham Rehabilitation Uptake Maximisation (BRUM) study [ISRCTN72884263]

    Get PDF
    Background: Concerns have been raised about low participation rates of people from minority ethnic groups in clinical trials. However, the evidence is unclear as many studies do not report the ethnicity of participants and there is insufficient information about the reasons for ineligibility by ethnic group. Where there are data, there remains the key question as to whether ethnic minorities more likely to be ineligible (e.g. due to language) or decline to participate. We have addressed these questions in relation to the Birmingham Rehabilitation Uptake Maximisation (BRUM) study, a randomized controlled trial (RCT) comparing a home-based with a hospital-based cardiac rehabilitation programme in a multi-ethnic population in the UK. Methods: Analysis of the ethnicity, age and sex of presenting and recruited subjects for a trial of cardiac rehabilitation in the West-Midlands, UK. Participants: 1997 patients presenting post-myocardial infarction, percutaneous transluminal coronary angioplasty or coronary artery bypass graft surgery. Data collected: exclusion rates, reasons for exclusion and reasons for declining to participate in the trial by ethnic group. Results: Significantly more patients of South Asian ethnicity were excluded (52% of 'South Asian' v 36% 'White European' and 36% 'Other', p < 0.001). This difference in eligibility was primarily due to exclusion on the basis of language (i.e. the inability to speak English or Punjabi). Of those eligible, similar proportions were recruited from the different ethnic groups (white, South Asian and other). There was a marked difference in eligibility between people of Indian, Pakistani or Bangladeshi origin
    • …
    corecore