3 research outputs found

    Potensi Agen Hayati Dalam Menghambat Pertumbuhan Phytium SP. Secara in Vitro

    Full text link
    The Potential of Biological Agents to Inhibit Growth of Phytium sp. In Vitro. The study aimed at testing the potential of some antagonistic fungi isolated from durian seedlings media to inhibit growth of Phytium sp. Research was done at the Central Laboratory of Tropical Fruit Research Solok in July-September 2009 by using a complete randomized design with 5 treatments and 4 replications. Tests was conducted by dual culture method on PDA. The results showed that Gliocladium sp., Trichoderma sp.a, Trichoderma sp.b, Aspergilus sp., and Penicillium sp. can inhibit growth of Phytium sp., with growth inhibition of 50, 49.5, 47, 48, and 38.3% respectively. Inhibition mecanism of Gliocladium sp., and Trichoderma sp. were competition, antibiosis, lisis, and parasitism, while Penicillium sp. was antibiosis. Gliocladium sp., Trichoderma sp.a, Trichoderma sp.b, Aspergilus sp., and Penicillium sp. can be used as biological agents to control pathogenic fungi Phytium sp

    Quality Improvement of Mangosteen for Export Through Drip Irrigation System and Yellow Fluorescent Sticky Trap Installation

    Full text link
    Mangosteen (Garcinia mangostana Linn.) dubbed as “finest fruit of the world”, has potential for both domestic market and export. However, this potential is threatened by low fruit quality caused by production of yellow latex and fruit scarring. The research objective was to obtain technology to reduce yellow latex and control Scirtothrips dorsalis, a pest that causes scarring on mangosteen. A randomized block design with four treatments and 14 replications was used in this research. Significant differences among the treatments were calculated using the Honestly Significant Difference (HSD) test. The results showed that treatment of drip irrigation system in combination with removing weeds under the canopy (A) or removing weeds followed by minimum tillage under the canopy (B) or removing weeds then covering with rice hay mulch under the canopy (C), where N, P, K, Ca, Mg fertilizer and yellow fluorescent sticky trap were applied could reduce scarring intensity and percentage of yellow latex on the fruit peel. However, the treatments did not significantly impact fruit diameter or percentage of yellow latex inside the fruit. Nevertheless, treatment C improved mangosteen quality by as much as 67.79% fulfilling export standard requirements

    Potency of Salicylic Acid to Disrupt the Growth and Development of Papaya Mealybug, Paracoccus Marginatus (Hemiptera: Pseudococcidae)

    Full text link
    Mealybug is an important pest of papaya plants. Induction of plant resistance using elicitors, such as salicylic acid, might have the potency to reduce the extent of crop damage by mealybug. Therefore, a laboratory experiment was performed to determine the effect of salicylic acid on feeding preference, fecundity, oviposition period, and longevity of papaya mealybug adult, Paracoccus marginatus. The results showed that the application of salicylic acid increased total phenol content on papaya leaf (r = 0.57) hence decreased in feeding preferences and fecundity, slowed down the growth period of the nymph and pre-oviposition period, and prolonged the longevity of mealybug. The potency of using salicylic acid to control of mealybug on papaya in integrated pest management was discussed in this paper
    corecore