138 research outputs found
Analysis of a Hydroelectric Plant connected to Electrical Power System in the Physical Domain
A bond graph model of a hydroelectric plant is
proposed. In order to analyze the system some structural properties
of a bond graph are used. The structural controllability of
the hydroelctric plant is described. Also, the steady state of the
state variables applying the bond graph in a derivative causality
assignment is obtained. Finally, simulation results of the system
are shown
Oral Microbiome and Gingival Gene Expression of Inflammatory Biomolecules with Aging and Periodontitis
Although data describe the presence and increase of inflammatory mediators in the local environment in periodontitis vs. health in humans, details regarding how these responses evolve in the transition from health to disease, changes during disease progression, and features of a resolved lesion remain unknown. This study used a nonhuman primate model of ligature-induced periodontitis in young, adolescent, adult, and aged animals to document features of inflammatory response affected by age. Rhesus monkeys had ligatures tied and provided gingival tissue biopsy specimens at baseline, 0.5, 1, and 3 months of disease and at 5 months of the study, which was 2 months post-ligature removal for clinically resolved tissues. The transcriptome was assessed using microarrays for chemokine (n = 41), cytokine (n = 45), chemokine receptor (n = 21), cytokine receptor (n = 37), and lipid mediator (n = 31) genes. Limited differences were noted in healthy tissues for chemokine expression with age; however, chemokine receptor genes were decreased in young but elevated in aged samples. IL1A, IL36A, and IL36G cytokines were decreased in the younger groups, with IL36A elevated in aged animals. IL10RA/IL10RB cytokine receptors were altered with age. Striking variation in the lipid mediator genes in health was observed with nearly 60% of these genes altered with age. A specific repertoire of chemokine and chemokine receptor genes was affected by the disease process, predominated by changes during disease initiation. Cytokine/cytokine receptor genes were also elevated with disease initiation, albeit IL36B, IL36G, and IL36RN were all significantly decreased throughout disease and resolution. Significant changes were observed in similar lipid mediator genes with disease and resolution across the age groups. Examination of the microbiome links to the inflammatory genes demonstrated that specific microbes, including Fusobacterium, P. gingivalis, F. alocis, Pasteurellaceae, and Prevotella are most frequently significantly correlated. These correlations were generally positive in older animals and negative in younger specimens. Gene expression and microbiome patterns from baseline were distinctly different from disease and resolution. These results demonstrate patterns of inflammatory gene expression throughout the phases of the induction of a periodontal disease lesion. The patterns show a very different relationship to specific members of the oral microbiome in younger compared with older animals
Gingival Transcriptome of Innate Antimicrobial Factors and the Oral Microbiome with Aging and Periodontitis
The epithelial barrier at mucosal sites comprises an important mechanical protective feature of innate immunity, and is intimately involved in communicating signals of infection/tissue damage to inflammatory and immune cells in these local environments. A wide array of antimicrobial factors (AMF) exist at mucosal sites and in secretions that contribute to this innate immunity. A non-human primate model of ligature-induced periodontitis was used to explore characteristics of the antimicrobial factor transcriptome (n = 114 genes) of gingival biopsies in health, initiation and progression of periodontal lesions, and in samples with clinical resolution. Age effects and relationship of AMF to the dominant members of the oral microbiome were also evaluated. AMF could be stratified into 4 groups with high (n = 22), intermediate (n = 29), low (n = 18) and very low (n = 45) expression in healthy adult tissues. A subset of AMF were altered in healthy young, adolescent and aged samples compared with adults (e.g., APP, CCL28, DEFB113, DEFB126, FLG2, PRH1) and were affected across multiple age groups. With disease, a greater number of the AMF genes were affected in the adult and aged samples with skewing toward decreased expression, for example WDC12, PGLYRP3, FLG2, DEFB128, and DEF4A/B, with multiple age groups. Few of the AMF genes showed a \u3e2-fold increase with disease in any age group. Selected AMF exhibited significant positive correlations across the array of AMF that varied in health and disease. In contrast, a rather limited number of the AMF significantly correlated with members of the microbiome; most prominent in healthy samples. These correlated microbes were different in younger and older samples and differed in health, disease and resolution samples. The findings supported effects of age on the expression of AMF genes in healthy gingival tissues showing a relationship to members of the oral microbiome. Furthermore, a dynamic expression of AMF genes was related to the disease process and showed similarities across the age groups, except for low/very low expressed genes that were unaffected in young samples. Targeted assessment of AMF members from this large array may provide insight into differences in disease risk and biomolecules that provide some discernment of early transition to disease
Gingival transcriptomic patterns of macrophage polarization during initiation, progression, and resolution of periodontitis.
Phenotypic and functional heterogeneity of macrophages is clearly a critical component of their effective functions in innate and adaptive immunity. This investigation hypothesized that altered profiles of gene expression in gingival tissues in health, disease, and resolution would reflect changes in macrophage phenotypes occurring in these tissues. The study used a nonhuman primate model to evaluate gene expression profiles as footprints of macrophage variation using a longitudinal experimental model of ligature-induced periodontitis in animals from 3 to 23 years of age to identify aging effects on the gingival environment. Significant differences were observed in distribution of expressed gene levels for M0, M1, and M2 macrophages in healthy tissues with the younger animals showing the least expression. M0 gene expression increased with disease in all but the aged group, while M1 was increased in adult and young animals, and M2 in all age groups, as early as disease initiation (within 0.5 months). Numerous histocompatibility genes were increased with disease, except in the aged samples. An array of cytokines/chemokines representing both M1 and M2 cells were increased with disease showing substantial increases with disease initiation (e.g. IL1A, CXCL8, CCL19, CCL2, CCL18), although the aged tissues showed a more limited magnitude of change across these macrophage genes. The analytics of macrophage genes at sites of gingival health, disease, and resolution demonstrated distinct profiles of host response interactions that may help model the disease mechanisms occurring with the formation of a periodontal lesion
Comparative Analysis of Microbial Sensing Molecules in Mucosal Tissues with Aging
Host-bacterial interactions at mucosal surfaces require recognition of the bacteria by host cells enabling targeted responses to maintain tissue homeostasis. It is now well recognized that an array of host-derived pattern recognition receptors (PRRs), both cell-bound and soluble, are critical to innate immune engagement of microbes via microbial-associated molecular patterns (MAMP). This report describes the use of a nonhuman primate model to evaluate changes in the expression of these sensing molecules related to aging in healthy gingival tissues. Macaca mulatta aged 3-24 years were evaluated clinically and gingival tissues obtained, RNA isolated and microarray analysis conducted for gene expression of the sensing pattern recognition receptors (PRRs). The results demonstrated increased expression of various PRRs in healthy aging gingiva including extracellular (CD14, CD209, CLEC4E, TLR4), intracellular (NAIP, IFIH1, DAI) and soluble (PTX4, SAA1) PRRs. Selected PRRs were also correlated with both bleeding on probing (BOP) and pocket depth (PD) in the animals. These findings suggest that aged animals express altered levels of various PRRs that could affect the ability of the tissues to interact effectively with the juxtaposed microbial ecology, presumably contributing to an enhanced risk of periodontitis even in clinically healthy oral mucosal tissues with aging
Comparative Analysis of Gene Expression Patterns for Oral Epithelial Cell Functions in Periodontitis
The structure and function of epithelial cells are critical for the construction and maintenance of intact epithelial surfaces throughout the body. Beyond the mechanical barrier functions, epithelial cells have been identified as active participants in providing warning signals to the host immune and inflammatory cells and in communicating various detailed information on the noxious challenge to help drive specificity in the characteristics of the host response related to health or pathologic inflammation. Rhesus monkeys were used in these studies to evaluate the gingival transcriptome for naturally occurring disease samples (GeneChip® Rhesus Macaque Genome Array) or for ligature-induced disease (GeneChip® Rhesus Gene 1.0 ST Array) to explore up to 452 annotated genes related to epithelial cell structure and functions. Animals were distributed by age into four groups: ≤ 3 years (young), 3-7 years (adolescent), 12-16 years (adult), and 18-23 years (aged). For naturally occurring disease, adult and aged periodontitis animals were used, which comprised 34 animals (14 females and 20 males). Groups of nine animals in similar age groups were included in a ligature-induced periodontitis experiment. A buccal gingival sample from either healthy or periodontitis-affected tissues were collected, and microarray analysis performed. The overall results of this investigation suggested a substantial alteration in epithelial cell functions that occurs rapidly with disease initiation. Many of these changes were prolonged throughout disease progression and generally reflect a disruption of normal cellular functions that would presage the resulting tissue destruction and clinical disease measures. Finally, clinical resolution may not signify biological resolution and represent a continued risk for disease that may require considerations for additional biologically specific interventions to best manage further disease
Effects of Aging on Apoptosis Gene Expression in Oral Mucosal Tissues
Apoptotic processes are important for physiologic renewal of an intact epithelial barrier and contribute some antimicrobial resistance for bacteria and viruses, as well as anti-inflammatory effects that benefits the mucosa. The oral cavity presents a model of host-bacterial interactions at mucosal surfaces, in which a panoply of microorganisms colonizes various niches in the oral cavity and creates complex multispecies biofilms that challenge the gingival tissues. This report details gene expression in apoptotic pathways that occur in oral mucosal tissues across the lifespan, using a nonhuman primate model. Macaca mulatta primates from 2 to 23 years of age (n = 23) were used in a cross-sectional study to obtain clinical healthy gingival tissues specimens. Further, mRNA was prepared and evaluated using the Affymetrix Rhesus GeneChip and 88 apoptotic pathway genes were evaluated. The results identified significant positive correlations with age in 12 genes and negative correlations with an additional five genes. The gene effects were predicted to alter apoptosis receptor levels, extrinsic apoptotic pathways through caspases, cytokine effects on apoptotic events, Ca+2-induced death signaling, cell cycle checkpoints, and potential effects of survival factors. Both the positively and negatively correlated genes within the apoptotic pathways provided evidence that healthy tissues in aging animals exhibit decreased apoptotic potential compared to younger animals. The results suggested that decreased physiologic apoptotic process in the dynamic septic environment of the oral mucosal tissues could increase the risk of aging tissues to undergo destructive disease processes through dysregulated inflammatory responses to the oral microbial burden
Transcriptomic Phases of Periodontitis Lesions Using the Nonhuman Primate Model
We used a nonhuman primate model of ligature-induced periodontitis to identify patterns of gingival transcriptomic after changes demarcating phases of periodontitis lesions (initiation, progression, resolution). A total of 18 adult Macaca mulatta (12–22 years) had ligatures placed (premolar, 1st molar teeth) in all 4 quadrants. Gingival tissue samples were obtained (baseline, 2 weeks, 1 and 3 months during periodontitis and at 5 months resolution). Gene expression was analyzed by microarray [Rhesus Gene 1.0 ST Array (Affymetrix)]. Compared to baseline, a large array of genes were significantly altered at initiation (n = 6049), early progression (n = 4893), and late progression (n = 5078) of disease, with the preponderance being up-regulated. Additionally, 1918 genes were altered in expression with disease resolution, skewed towards down-regulation. Assessment of the genes demonstrated specific profiles of epithelial, bone/connective tissue, apoptosis/autophagy, metabolism, regulatory, immune, and inflammatory responses that were related to health, stages of disease, and tissues with resolved lesions. Unique transcriptomic profiles occured during the kinetics of the periodontitis lesion exacerbation and remission. We delineated phase specific gene expression profiles of the disease lesion. Detection of these gene products in gingival crevicular fluid samples from human disease may contribute to a better understanding of the biological dynamics of the disease to improve patient management
Organic Dairy Sheep Production Management
Organic production systems are based on natural processes, the use of local feed resources, and the maintenance of biodiversity in all senses. Several studies have noted the positive effects of organic sheep milk production systems on animal welfare, animal health, product quality, and environmental impact. On the other hand, it has been reported that dairy sheep organic farms show lower milk yields and increase the susceptibility to environmental impacts compared with conventional farms. The standards that regulate feeding management in organic systems are one of the most critical factors that influence milk production performance. Lower milk production is also associated with poor ability to adapt specialized dairy breeds to organic management, low genetic potential for milk production in native and local breeds, and elevated dependence on environmental conditions. However, the aim of organic dairy production is not to reach maximum dairy productivity but rather to integrate animal and crop production and to develop a symbiotic relationship between recyclable and renewable resources; furthermore, organic production positively affects the employment rate and quality of life in rural communities. Organic dairy sheep production is one means of improving the balance between society’s demand for food and the ecological impact of the agro-alimentary industry
- …