22 research outputs found

    Spectroscopy of K-complex asteroids: Parent bodies of carbonaceous meteorites?

    No full text
    This is the first focused study of non-Eos K asteroids. We have observed a total of 30 K-complex objects (12 K-2 Sk- and 13 Xk-type asteroids (from the Bus taxonomy), plus 3 K-candidates from previous work) and we present an analysis of their spectral properties from 0.4 to 2.5 μm. We targeted these asteroids because their previous observations are spectrally similar enough to suggest a possible compositional relationship. All objects have exhibited spectral redness in the visible wavelengths and minor absorptions near 1 micron. If, as suggested, K-complex asteroids (including K, Xk, and Sk) are the parent bodies of carbonaceous meteorites, knowledge of K-asteroid properties and distribution is essential to our understanding of the cosmochemical importance of some of the most primitive meteorite materials in our collection. This paper presents initial results of our analysis of telescopic data, with supporting analysis of laboratory measurements of meteorite analogs. Our results indicate that K-complex asteroids are distinct from other main belt asteroid types (S, B, C, F, and G). They do not appear to be a subset of these other types. K asteroids nearly span the range of band center positions and geometric albedos exhibited by the carbonaceous chondrites (CO, CM, CV, CH, CK, CR, and CI). We find that B-, C-, F- and G-type asteroids tend to be darker than meteorites, and can have band centers longer than any of the chondrites measured here. This could indicate that K-complex asteroids are better spectral analogues for the majority of our carbonaceous meteorites than the traditional B-, C-, F- and G-matches suggested in the literature. This paper present first results of our ongoing survey to determine K-type mineralogy, meteorite linkages, and significance to the geology of the asteroid regions. © 2009 Elsevier Inc. All rights reserved

    The composition of M-type asteroids: Synthesis of spectroscopic and radar observations

    No full text
    International audienceWe have conducted a radar-driven observational campaign of 22 main-belt asteroids (MBAs) focused on Bus-DeMeo Xc- and Xk-type objects (Tholen X and M class asteroids) using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). Sixteen of our targets were near-simultaneously observed with radar and those observations are described in a companion paper (Shepard, M.K., and 19 colleagues [2010]. Icarus, in press). We find that most of the highest metal-content asteroids, as suggested by radar, tend to exhibit silicate absorption features at both 0.9 and 1.9 mum, and the lowest metal-content asteroids tend to exhibit either no bands or only the 0.9 mum band. Eleven of the asteroids were observed at several rotational longitudes in the near-infrared and significant variations in continuum slope were found for nine in the spectral regions 1.1-1.45 mum and 1.6-2.3 mum. We utilized visible wavelength data (Bus, S.J., Binzel, R.P. [2002b]. Icarus 158, 146-177; Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., Barucci, M.A. [2010]. Icarus 210, 655-673.) for a more complete compositional analysis of our targets. Compositional evidence is derived from our target asteroid spectra using two different methods: (1) a chi2 search for spectral matches in the RELAB database, and (2) parametric comparisons with meteorites. This paper synthesizes the results of the RELAB search and the parametric comparisons with compositional suggestions based on radar observations. We find that for six of the seven asteroids with the highest iron abundances, our spectral results are consistent with the radar evidence (16 Psyche, 216 Kleopatra, 347 Pariana, 758 Mancunia, 779 Nina, and 785 Zwetana). Three of the seven asteroids with the lowest metal abundances, our spectral results are consistent with the radar evidence (21 Lutetia, 135 Hertha, 497 Iva). The remaining seven asteroids (22 Kalliope, 97 Klotho, 110 Lydia, 129 Antigone, 224 Oceana, 678 Fredegundis, and 771 Libera) have ambiguous compositional interpretations when comparing the spectral analogs to the radar analogs. The number of objects with ambiguous results from this multi-wavelength survey using visible, near-infrared, and radar wavelengths indicates that perhaps a third diagnostic wavelength region (such as the mid-infrared around 2-4 mum, the mid-infrared around 10-15 mum, and/or the ultraviolet around 0.2-0.4 mum) should be explored to resolve the discrepancies

    Asteroid 21 Lutetia at 3μm: Observations with IRTF SpeX

    No full text
    We present observations of Asteroid 21 Lutetia collected 2003-2008 using the SpeX instrument on the NASA Infrared Telescope Facility (IRTF) covering 2-4 μm. We also reevaluate NSFCam observations obtained in 1996 (Rivkin, A.S., Lebofsky, L.A., Clark, B.E., Howell, E.S., Britt, D.T. [2000]. Icarus 145, 351-368). Taken together, these show deeper 3-μm band depths (of order 3-5%) in the southern hemisphere of Lutetia, and shallower band depths (of order 2% or less) in the north. Such variation is consistent with observations at shorter wavelength by previous workers (Nedelcu, D.A. et al. [2007]. Astron. Astrophys. 470, 1157-1164; Lazzarin, M. et al. [2010]. Mon. Not. R. Astron. Soc. 408, 1433-1437), who observed hemispheric-level variations from C-like spectra to X-like spectra. While the shallowness of absorption bands on Lutetia hinders identification of its surface composition, goethite appears plausible as a constituent in its southern hemisphere (Beck, P., Quirico, E., Sevestre, D., Montes-Hernandez, G., Pommerol, A., Schmitt, B. [2011]. Astron. Astrophys. 526, A85-A89). Mathematical models of space weathered goethite are most consistent with Lutetia\u27s southern hemisphere spectrum, but more work and further observations are necessary to confirm this suggestion. © 2011 Elsevier Inc

    Observations of X/M asteroids across multiple wavelengths

    No full text
    We have conducted a radar-driven observational campaign of main-belt asteroids (MBAs) focused on X/M class asteroids using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). M-type asteroids have been identified as metallic, enstatite chondrites and/or heavily altered carbonaceous chondrites [Bell, J.F., Davis, D., Hartmann, W.K., Gaffey, M.J., 1989. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (Eds.), Asteroids II. Univ. of Arizona Press, Tucson, pp. 921-948; Gaffey, M.J., McCord, T.B., 1979. In: Gehrels, T., Matthews, M.S. (Eds.), Asteroids. Univ. of Arizona Press, Tucson, pp. 688-723; Vilas, F., 1994. Icarus 111, 456-467]. Radar wavelength observations can determine whether an asteroid is metallic and provide information about the porosity and regolith depth. Near-infrared observations can help determine the grain size, porosity and composition of an object. Concurrent observations with these tools can give us a wealth of information about an object. Our objectives for this observation program were to (a) determine if there are any consistent relationships between spectra in the near-infrared wavelengths and radar signatures and (b) look for rotationally resolved relationships between asteroid radar properties and near-infrared spectral properties. This paper describes preliminary results of an ongoing survey of near-infrared observations of M-type asteroids and is a companion paper to radar observations reported by Shepard [Shepard, M.K., and 19 colleagues, 2008a. Icarus 195, 184-205]. In the analysis of 16 asteroid near-infrared spectra and nine radar measurements, we find a trend indicating a correlation between continuum slope from 1.7 to 2.45 μm and radar albedo-an asteroid with a steep continuum slope also has a bright radar albedo, which suggests a significant metal content. This may provide a means to use near-IR observations to predict the most likely metallic candidates for radar studies. © 2008 Elsevier Inc. All rights reserved
    corecore