208 research outputs found

    The involvement of AMPK/GSK3-beta signals in the control of metastasis and proliferation in hepato-carcinoma cells treated with anthocyanins extracted from Korea wild berry Meoru

    Get PDF
    BACKGROUND: Activation of the Wnt pathway is known to promote tumorigenesis and tumor metastasis, and targeting Wnt pathway inhibition has emerged as an attractive approach for controlling tumor invasion and metastasis. The major pathway for inhibiting Wnt is through the degradation of β-catenin by the GSK3-beta/CK1/Axin/APC complex. It was found that Hep3B hepato-carcinoma cells respond to anthocyanins through GSK3-beta-induced suppression of beta-catenin; however, they cannot dephosphorylate GSK3-beta without AMPK activation. METHODS: We tested the effects of anthocyanins on proliferation and apoptosis by MTT and Annexin V-PI staining in vitro. Mouse xenograft models of hepato-carcinomas were established by inoculation with Hep3B cells, and mice were injected with 50 mg/kg/ml of anthocyanins. In addition, protein levels of p-GSK3-beta, beta-catenin, p-AMPK, MMP-9, VEGF, and Ang-1 were also analyzed using western blot. RESULTS: Anthocyanins decrease phospho-GSK3-beta and beta-catenin expression in an in vivo tumor xenograft model, increase AMPK activity in this model, and inhibit cell migration and invasion, possibly by inhibiting MMP-2 (in vitro) and the panendothelial marker, CD31 (in vivo). To elucidate the role of the GSK3-beta/beta-catenin pathway in cancer control, we conditionally inactivated this pathway, using activated AMPK for inhibition. Further, we showed that AMPK siRNA treatment abrogated the ability of anthocyanins to control cell proliferation and metastatic potential, and Compound C, an AMPK inhibitor, could not restore GSK3-beta regulation, as exhibited by anthocyanins in Hep3B cells. CONCLUSION: These observations imply that the AMPK-mediated GSK3-beta/beta-catenin circuit plays crucial roles in inhibiting cancer cell proliferation and metastasis in anthocyanin-treated hepato-carcinoma cells of Meoru origin

    Orbital Interaction and Electron Density Transfer in PdII([9]aneB2A)L2 Complexes: Theoretical Approaches

    Get PDF
    The geometric structures of Pd-complexes {Pd([9]aneB2A)L2 and Pd([9]aneBAB)L2 where A = P, S; B = N; L = PH3, P(CH3)3, Cl−}, their selective orbital interaction towards equatorial or axial (soft A…Pd) coordination of macrocyclic [9]aneB2A tridentate to PdL2, and electron density transfer from the electron-rich trans L-ligand to the low-lying unfilled a1g(5s)-orbital of PdL2 were investigated using B3P86/lanl2DZ for Pd and 6-311+G** for other atoms. The pentacoordinate endo-[Pd([9]aneB2A)(L-donor)2]2+ complex with an axial (soft A--Pd) quasi-bond was optimized for stability. The fifth (soft A--Pd) quasi-bond between the σ-donor of soft A and the partially unfilled a1g(5s)-orbital of PdL2 was formed. The pentacoordinate endo-Pd([9]aneB2A)(L-donor)2]2+ complex has been found to be more stable than the corresponding tetracoordinate endo-Pd complexes. Except for the endo-Pd pentacoordinates, the tetracoordinate Pd([9]aneBAB)L2 complex with one equatorial (soft A-Pd) bond is found to be more stable than the Pd([9]aneB2A)L2 isomer without the equatorial (A-Pd) bond. In particular, the geometric configuration of endo-[Pd([9]anePNP)(L-donor)2]2+ could not be optimized

    Exosomes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Promote Epidermal Barrier Repair by Inducing de Novo Synthesis of Ceramides in Atopic Dermatitis.

    Get PDF
    Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes' effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-α, IFN-γ, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD

    Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma

    Get PDF
    Rationale: The clinical application of biomarkers reflecting tumor immune microenvironment is hurdled by the invasiveness of obtaining tissues despite its importance in immunotherapy. We developed a deep learning-based biomarker which noninvasively estimates a tumor immune profile with fluorodeoxyglucose positron emission tomography (FDG-PET) in lung adenocarcinoma (LUAD). Methods: A deep learning model to predict cytolytic activity score (CytAct) using semi-automatically segmented tumors on FDG-PET trained by a publicly available dataset paired with tissue RNA sequencing (n = 93). This model was validated in two independent cohorts of LUAD: SNUH (n = 43) and The Cancer Genome Atlas (TCGA) cohort (n = 16). The model was applied to the immune checkpoint blockade (ICB) cohort, which consists of patients with metastatic LUAD who underwent ICB treatment (n = 29). Results: The predicted CytAct showed a positive correlation with CytAct of RNA sequencing in validation cohorts (Spearman rho = 0.32, p = 0.04 in SNUH cohort; spearman rho = 0.47, p = 0.07 in TCGA cohort). In ICB cohort, the higher predicted CytAct of individual lesion was associated with more decrement in tumor size after ICB treatment (Spearman rho = -0.54, p < 0.001). Higher minimum predicted CytAct in each patient associated with significantly prolonged progression free survival and overall survival (Hazard ratio 0.25, p = 0.001 and 0.18, p = 0.004, respectively). In patients with multiple lesions, ICB responders had significantly lower variance of predicted CytActs (p = 0.005). Conclusion: The deep learning model that predicts CytAct using FDG-PET of LUAD was validated in independent cohorts. Our approach may be used to noninvasively assess an immune profile and predict outcomes of LUAD patients treated with ICB.

    A Case of Granular Cell Tumor of the Trachea

    Get PDF
    A 20-year-old man presented to our outpatient clinic with hemoptysis, cough, and pleuritic chest pain. His chest radiograph and pulmonary function tests (PFT) were normal. A bronchoscopy showed a small yellowish patch with a regular surface. A direct bronchoscopic biopsy was performed. The pathologic findings showed a benign granular cell tumor. The respiratory symptoms resolved after biopsying the tumor. On follow.up, there were no signs of recurrence of the granular cell tumor after a period of 24 months

    Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data

    Get PDF
    Characterization of intratumoral heterogeneity is critical to cancer therapy, as the presence of phenotypically diverse cell populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intratumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the relative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised a computational approach called HoneyBADGER to identify copy number variation and loss of heterozygosity in individual cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct the underlying subclonal architecture. By examining several tumor types, we show that HoneyBADGER is effective at identifying deletions, amplifications, and copy-neutral loss-of-heterozygosity events and is capable of robustly identifying subclonal focal alterations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple myeloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer progression. Other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal structure and were likely driven by alternative, nonclonal mechanisms. These results highlight the need for integrative analysis to understand the molecular and phenotypic heterogeneity in cancer

    Effect of Chongkukjang on histamine-induced skin wheal response: A randomized, double-blind, placebo-controlled trial

    Get PDF
    AbstractBackgroundStudies in animals have demonstrated the antiallergenic properties of Chongkukjang (CKJ), a traditional Korean food made by fermentation of soybean with Bacillus subtilis. CKJ might therefore be used as an ingredient in a functional food designed to suppress allergies. The purpose of this study was to investigate the effect of CKJ on histamine-induced skin wheal response in healthy participants.MethodsA randomized, double-blind, placebo-controlled trial was conducted. Sixty participants (48 women and 12 men) were randomly assigned to one of two groups: One group received 35 g CKJ daily for 12 weeks, and the other received a placebo at the same dosing frequency. A skin prick test with histamine (10 mg/mL) was conducted on the ventral forearm 10 cm from the elbow, and assessed 15 minutes later. Outcomes included measurement of efficacy [skin wheal response, immunoglobulin E (IgE), histamine, interferon-gamma, interleukin-4, eosinophil, and eosinophil cationic protein (ECP)], and safety (adverse events, laboratory test results, electrocardiogram, anthropometric values, and vital signs).ResultsFifty-five participants (28 in the CKJ group and 27 in the placebo group) completed the study. After 12 weeks of supplementation, participants in the CKJ group showed a significant reduction in histamine-induced skin wheal areas compared with placebo group (p < 0.05). At 12 weeks, the CKJ group showed a significant improvement in percentage change from baseline in histamine-induced wheal area, compared with the placebo group (p < 0.05). CKJ did not influence blood levels of IgE, histamine, interferon-gamma, interleukin-4, eosinophil, or ECP.ConclusionOral administration of CKJ for 12 weeks resulted in a reduction of the skin wheal response to histamine, with no apparent adverse effects. Trial registration: ClinicalTrials.gov: NCT01402141

    Prognostic Role of TMED3 in Clear Cell Renal Cell Carcinoma: A Retrospective Multi-Cohort Analysis

    Get PDF
    Transmembrane p24 trafficking protein 3 (TMED3) is a metastatic suppressor in colon cancer and hepatocellular carcinoma. However, its function in the progression of clear cell renal cell carcinoma (ccRCC) is unknown. Here, we report that TMED3 could be a new prognostic marker for ccRCC. Patient data were extracted from cohorts in the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Differential expression of TMED3 was observed between the low stage (Stage I and II) and high stage (Stage III and IV) patients in the TCGA and ICGC cohorts and between the low grade (Grade I and II) and high grade (Grade III and IV) patients in the TCGA cohort. Further, we evaluated TMED3 expression as a prognostic gene using Kaplan-Meier survival analysis, multivariate analysis, the time-dependent area under the curve (AUC) of Uno’s C-index, and the AUC of the receiver operating characteristics at 5 years. The Kaplan-Meier analysis revealed that TMED3 overexpression was associated with poor prognosis for ccRCC patients. Analysis of the C-indices and area under the receiver operating characteristic curve further supported this. Multivariate analysis confirmed the prognostic significance of TMED3 expression levels (P = 0.005 and 0.006 for TCGA and ICGC, respectively). Taken together, these findings demonstrate that TMED3 is a potential prognostic factor for ccRCC
    corecore