21 research outputs found

    Thermodynamics

    No full text

    Thermal Control and Enhancement of Heat Transport Capacity of Two-Phase Loops With Electrohydrodynamic Conduction Pumping

    No full text
    There are three kinds of electrohydrodynamics (EHD) pumping based on Coulomb force: induction pumping, ion-drag pumping, and pure conduction pumping. EHD induction pumping relies on the generation of induced charges. This charge induction in the presence of an electric field takes place due to a non-uniformity in the electrical conductivity of the fluid which can be caused by a non-uniform temperature distribution and/or an inhomogeneity of the fluid (e.g. a two-phase fluid). Therefore, induction pumping cannot be utilized in an isothermal homogeneous liquid. In order to generate Coulomb force, a space charge must be generated. There are two main mechanisms for generating a space charge in an isothermal liquid. The first one is associated with the ion injection at a metal/liquid interface and the related pumping is referred to as ion-drag pumping. Ion-drag pumping is not desirable because it can deteriorate the electrical properties of the working fluid. The second space charge generation mechanism is associated with the heterocharge layers of finite thickness in the vicinity of the electrodes. Heterocharge layers result from dissociation of the neutral electrolytic species and recombination of the generated ions. This type of pumping is referred to as pure conduction pumping. This project investigates the EHD pumping through pure conduction phenomenon. Very limited work has been conducted in this field and the majority of the published papers in this area have mistakenly assumed that the electrostriction force was responsible for the net flow generated in an isothermal liquid. The main motivation behind this study is to investigate an EHD conduction pump for a two-phase loop to be operated in the microgravity environment. The pump is installed in the liquid return passage (isothermal liquid) from the condenser section to the evaporator section. Unique high voltage and ground electrodes have been designed that generate sufficient pressure heads with very low electric power requirements making the EHD conduction pumping attractive to applications such as two-phase systems (e.g. capillary pumped loops and heat pipes). Currently, the EHD conduction pump performance is being tested on a two-phase loop under various operating conditions in the laboratory environment. The simple non-mechanical and lightweight design of the EHD pump combined with the rapid control of performance by varying the applied electric field, low power consumption, and reliability offer significant advantages over other pumping mechanisms; particularly in reduced gravity applications

    On Microscale Heat Transfer in Thin Film Pyroelectric Sensors

    No full text
    Results are presented from numerical simulations of transient temperature distributions in one-dimensional (ID) and two-dimensional (2D) layered materials with relevance to pyroelectric thin film sensor devices. Simulations are conducted for both Fourier\u27s heat conduction law and for the Equation of Phonon Radiative Transfer (EPRT) to investigate the significance of microscale heat transfer effects. An efficient parallelization scheme is described which makes the numerical solution to the 2D EPRT feasible by direct finite difference solution. Material properties are chosen to ensure compatibility with bulk thermal conductivity and heat capacity measurements. Effects of material thickness, designation of the material properties, and predicted external thermal conductivity and boundary resistance are discussed for layered SiO2 and Diamond films. It is shown that substantial deviations from Fourier\u27s law occur for relevant film dimensions. Implications for sensor design and modeling are discussed
    corecore