2,837 research outputs found

    Unifying the Fixed Order Evolution of Fragmentation Functions with the Modified Leading Logarithm Approximation

    Full text link
    An approach which unifies the Double Logarithmic Approximation at small x and the leading order DGLAP evolution of fragmentation functions at large x is presented. This approach reproduces exactly the Modified Leading Logarithm Approximation, but is more complete due to the degrees of freedom given to the quark sector and the inclusion of the fixed order terms. We find that data from the largest x values to the peak region can be better fitted than with other approaches

    Development of a sterilizable ruggedized vidicon for lunar and planetary photography Final report, 21 May 1965 - 21 Nov. 1967

    Get PDF
    Sterilizable ruggedized vidicon for lunar and planetary photograph

    Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

    Full text link
    An approach which unifies the Double Logarithmic Approximation at small x and the leading order DGLAP evolution of fragmentation functions at large x is presented. This approach reproduces exactly the Modified Leading Logarithm Approximation, but is more complete due to the degrees of freedom given to the quark sector and the inclusion of the fixed order terms. We find that data from the largest x values to the peak region can be better fitted than with other approaches.Comment: 10 pages, 3 figure

    Criticality, Fractality and Intermittency in Strong Interactions

    Full text link
    Assuming a second-order phase transition for the hadronization process, we attempt to associate intermittency patterns in high-energy hadronic collisions to fractal structures in configuration space and corresponding intermittency indices to the isothermal critical exponent at the transition temperature. In this approach, the most general multidimensional intermittency pattern, associated to a second-order phase transition of the strongly interacting system, is determined, and its relevance to present and future experiments is discussed.Comment: 15 pages + 2 figures (available on request), CERN-TH.6990/93, UA/NPPS-5-9

    Clan Properties in Parton Showers

    Full text link
    By considering clans as genuine elementary subprocesses, i.e., intermediate parton sources in the Simplified Parton Shower model, a generalized version of this model is defined. It predicts analytically clan properties at parton level in agreement with the general trends observed experimentally at hadronic level and in Monte Carlo simulations both at partonic and hadronic level. In particular the model shows a linear rising in rapidity of the average number of clans at fixed energy of the initial parton and its subsequent bending for rapidity intervals at the border of phase space, and approximate energy independence of the average number of clans in fixed rapidity intervals. The energy independence becomes stricter by properly normalizing the average number of clans.Comment: (27 pages in Plain TeX plus 10 Postscript Figures, all compressed via uufiles) DFTT 7/9

    Intermittency in Branching Processes

    Full text link
    We study the intermittency properties of two branching processes, one with a uniform and another with a singular splitting kernel. The asymptotic intermittency indices, as well as the leading corrections to the asymptotic linear regime are explicitly computed in an analytic framework. Both models are found to possess a monofractal spectrum with φq=q1\varphi_{q}=q-1. Relations with previous results are discussed.Comment: 20 pages, UCLA93/TEP/2
    corecore