16 research outputs found

    Development of Microemulsion Dermal Products Based on Avocado Oil for Topical Administration

    Get PDF
    The research described in this study aimed at developing microemulsions for dermal application using avocado oil. Due to its composition, avocado oil helps maintaining the barrier function of the skin. It has a nutritional effect on the skin, and it reduces the intensity of the process of skin peeling. Various surfactant:cosurfactant systems were tested in the conducted studies. There were no significant differences between the diagrams generated by Tween 20 and the surfactant:cosurfactant system, Tween 20:PEG400, at a ratio of 1:1. Six formulations were selected from the dilution line 7 of the ternary phase diagrams obtained by using as a surfactant Tween 20 and Tween 20:PEG 400, respectively. The formulations were characterized by determining physicochemical properties specific. In the next phase of study, these six formulations were used as a vehicle for incorporating erythromycin in order to develop erythromicyn incorporated formulations for topical administration. The quality control of microemulsions with erythromycin was performed by evaluating the physical chemical, organoleptic and sensorial properties. Microemulsions were pharmacotechnically characterized by assessing the in vitro and ex vivo release kinetics of erythromycin

    Effect of Apitherapy Formulations against Carbon Tetrachloride-Induced Toxicity in Wistar Rats after Three Weeks of Treatment

    No full text
    The human body is exposed nowadays to increasing attacks by toxic compounds in polluted air, industrially processed foods, alcohol and drug consumption that increase liver toxicity, leading to more and more severe cases of hepatic disorders. The present paper aims to evaluate the influence of the apitherapy diet in Wistar rats with carbon tetrachloride-induced hepatotoxicity, by analyzing the biochemical determinations (enzymatic, lipid and protein profiles, coagulation parameters, minerals, blood count parameters, bilirubin levels) and histopathological changes at the level of liver, spleen and pancreas. The experiment was carried out on six groups of male Wistar rats. Hepatic lesions were induced by intraperitoneal injection of carbon tetrachloride (dissolved in paraffin oil, 10% solution). Two mL per 100 g were administered, every 2 days, for 2 weeks. Hepatoprotection was achieved with two apitherapy diet formulations containing honey, pollen, propolis, Apilarnil, with/without royal jelly. Biochemical results reveal that the two apitherapy diet formulations have a positive effect on improving the enzymatic, lipid, and protein profiles, coagulation, mineral and blood count parameters and bilirubin levels. The histopathological results demonstrate the benefits of the two apitherapy diet formulations on reducing toxicity at the level of liver, spleen and pancreas in laboratory animals

    Development of a Prolonged-Release Drug Delivery System with Magnolol Loaded in Amino-Functionalized Mesoporous Silica

    No full text
    Magnolol (MG) is a small-molecule neolignan polyphenolic compound isolated from the genus Magnolia. The anti-inflammatory, anti-oxidative, anti-diabetic, anti-tumorgenic, anti-neurodegenerative, anti-depressant and anti-microbial properties of MG are well documented in recent literature. These fascinating multiple biological activities of MG encourage research about the development of new delivery and administration approaches able to maximize its potential benefits. This study describes the amino-functionalization of the SBA-15 (Santa Barbara Amorphous) mesoporous matrix by post-synthesis grafting using APTES (3-aminopropyltriethoxysilane) and the characterization of amino-functionalized mesoporous silica SBA-15 loaded with MG in order to achieve modified drug delivery systems. The amino-functionalization of silica SBA-15 was carried out by grafting by refluxing in dry toluene. The powders obtained were characterized texturally by Brunauer-Emmett-Teller (BET) surface area analysis measurements and morphologically by scanning electron microscopy. MG loading degree in the nanoporous matrix was determined by the HPLC method at λ = 290 nm. Results showed that by grafting the amino groups in the silica SBA-15, we obtained amino-functionalized silica SBA-15 with an ordered structure, with specific surfaces and pore sizes that differ from the original matrix, which was reflected in the amount of MG immobilized and release kinetics profile

    “Off-Label” use of antibiotics in critical patients

    Get PDF
    In intensive care units, the most prescribed drugs are antibiotics, as result of the high incidence of infections among patients admitted to these units. In medical practice, antibiotic resistance is a phenomenon with dramatic consequences, which has led to the development of new strategies to solve this public health problem, including the use of ”off-label” drugs. Classification as an off-label prescription of a drug mainly refers to: unapproved therapeutic indication, formulation, dose (including dose interval), age or unapproved route of administration. The aim of this paper is to present the categories of appropriate ”off-label” use of drugs with a detailed description of the principles of use in this regime of antibiotics as mono- or combo-therapy

    Alendronate-Loaded Modified Drug Delivery Lipid Particles Intended for Improved Oral and Topical Administration

    No full text
    The present paper focuses on solid lipid particles (SLPs), described in the literature as the most effective lipid drug delivery systems that have been introduced in the last decades, as they actually combine the advantages of polymeric particles, hydrophilic/lipophilic emulsions and liposomes. In the current study, we present our most recent advances in the preparation of alendronate (AL)-loaded SLPs prepared by hot homogenization and ultrasonication using various ratios of a self-emulsifying lipidic mixture of Compritol 888, Gelucire 44/14, and Cremophor A 25. The prepared AL-loaded SLPs were investigated for their physicochemical, morphological and structural characteristics by dynamic light scattering, differential scanning calorimetry, thermogravimetric and powder X-ray diffraction analysis, infrared spectroscopy, optical and scanning electron microscopy. Entrapment efficacy and actual drug content were assessed by a validated HPLC method. In vitro dissolution tests performed in simulated gastro-intestinal fluids and phosphate buffer solution pH 7.4 revealed a prolonged release of AL of 70 h. Additionally, release kinetics analysis showed that both in simulated gastrointestinal fluids and in phosphate buffer solution, AL is released from SLPs based on equal ratios of lipid excipients following zero-order kinetics, which characterizes prolonged-release drug systems

    Implementation of QbD Approach to the Analytical Method Development and Validation for the Estimation of Metformin Hydrochloride in Tablet Dosage Forms by HPLC

    No full text
    The current studies entail quality by design (QbD)-enabled development of a simple, rapid, precise, accurate, and cost-effective high-performance liquid chromatographic method for estimation of metformin hydrochloride (M-HCl). Design of experiments (DoE) was applied for multivariate optimization of the experimental conditions of the HPLC method. Risk assessment was performed to identify the critical method parameters (CMPs) using Ishikawa diagram. The factor screening studies were performed using a two-factor three-levels design. Two independent factors, buffer pH and mobile phase composition, were used to design mathematical models. Central composite design (CCD) was used to study the response surface methodology and to study in depth the effects of these independent factors, thus evaluating the critical analytical attributes (CAAs), namely, retention time, peak area, and symmetry factor as the parameters of method robustness. Desirability function was used to simultaneously optimize the CAAs. The optimized and predicted data from contour diagram consisted of 0.02 M acetate buffer pH = 3/methanol in a ratio of 70/30 (v/v) as the mobile phase with a flow rate 1 mL/min. The separation was made on a Thermoscientific ODS HypersylTM chromatographic column (250 × 4.6 mm, 5 μm) with oven temperature 35 °C and UV detection at 235 nm. The optimized assay conditions were validated according to ICH guidelines. Hence, the results clearly showed that QbD approach could be successfully applied to optimize HPLC method for estimation of M-HCl. The method was applied both for the evaluation of M-HCl content in tablets, and for in vitro dissolution studies of M-HCl from conventional and prolonged-release tablets

    Infectious Inflammatory Processes and the Role of Bioactive Agent Released from Imino-Chitosan Derivatives Experimental and Theoretical Aspects

    No full text
    The paper focuses on the development of a multifractal theoretical model for explaining drug release dynamics (drug release laws and drug release mechanisms of cellular and channel-type) through scale transitions in scale space correlated with experimental data. The mathematical model has been developed for a hydrogel system prepared from chitosan and an antimicrobial aldehyde via covalent imine bonds. The reversible nature of the imine linkage points for a progressive release of the antimicrobial aldehyde is controlled by the reaction equilibrium shifting to the reagents, which in turn is triggered by aldehyde consumption in the inhibition of the microbial growth. The development of the mathematical model considers the release dynamic of the aldehyde in the scale space. Because the release behavior is dictated by the intrinsic properties of the polymer–drug complex system, they were explained in scale space, showing that various drug release dynamics laws can be associated with scale transitions. Moreover, the functionality of a Schrödinger-type differential equation in the same scale space reveals drug release mechanisms of channels and cellular types. These mechanisms are conditioned by the intensity of the polymer–drug interactions. It was demonstrated that the proposed mathematical model confirmed a prolonged release of the aldehyde, respecting the trend established by in vitro release experiments. At the same time, the properties of the hydrogel recommend its application in patients with intrauterine adhesions (IUAs) complicated by chronic endometritis as an alternative to the traditional antibiotics or antifungals
    corecore