165 research outputs found

    Analysis of HCV genotypes from blood donors shows three new HCV type 6 subgroups exist in Myanmar.

    Get PDF
    The prevalence of hepatitis C virus (HCV) genotypes in Myanmar in comparison with the rest of Southeast Asia is not well known. Serum samples were obtained from 201 HCV antibody-positive volunteer blood donors in and around the Myanmar city of Yangon. Of these, the antibody titers of 101 samples were checked by serial dilution using HCV antibody PA test II and Terasaki microplate as a low-cost method. To compare antibody titers by this method and RNA identification, we also checked HCV-RNA using the Amplicor 2.0 test. Most high-titer groups were positive for HCV-RNA. Of the 201 samples, 110 were successfully polymerase chain reaction (PCR) amplified. Among them, 35 (31.8%) were of genotype 1, 52 (47.3%) were of genotype 3, and 23 (20.9%) were of type 6 variants, and phylogenetic analysis of these type 6 variants revealed that 3 new type 6 subgroups exist in Myanmar. We named the subgroups M6-1, M6-2, and M6-3. M6-1 and M6-2 were relatively close to types 8 and 9, respectively. M6-3, though only found in one sample, was a brand-new subgroup. These subtypes were not seen in Vietnam, where type 6 group variants are widely spread. These findings may be useful for analyzing how and when these subgroups were formed

    Association of the rs738409 polymorphism in PNPLA3 with liver damage and the development of nonalcoholic fatty liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a genome-wide association scan, the single-nucleotide polymorphism (SNP) rs738409 in the patatin-like phospholipase 3 gene (<it>PNPLA3</it>) was strongly associated with increased liver fat content. We investigated whether this SNP is associated with the occurrence and progression of nonalcoholic fatty liver disease (NAFLD) in the Japanese population.</p> <p>Methods</p> <p>SNP rs738409 was genotyped by the Taqman assay in 253 patients with NAFLD (189 with nonalcoholic steatohepatitis [NASH] and 64 with simple steatosis) and 578 control subjects. All patients with NAFLD underwent liver biopsy. Control subjects had no metabolic disorders. For a case-control study, the <it>χ</it><sup>2</sup>-test (additive model) was performed. Odds ratios (ORs) were adjusted for age, gender, and body mass index (BMI) by using multiple logistic regression analysis with genotypes (additive model), age, gender, and BMI as the independent variables. Multiple linear regression analysis was performed to test the independent effect of risk allele on clinical parameters while considering the effects of other variables (age, gender, and BMI), which were assumed to be independent of the effect of the SNP.</p> <p>Results</p> <p>The risk allele (G-allele) frequency of rs738409 was 0.44 in the control subjects and 0.60 in patients with NAFLD; this shows a strong association with NAFLD (additive model, <it>P </it>= 9.4 × 10<sup>-10</sup>). The OR (95% confidence interval) adjusted for age, gender, and BMI was 1.73 (1.25-2.38). Multiple linear regression analysis indicated that the G-allele of rs738409 was significantly associated with increases in aspartate transaminase (AST) (<it>P </it>= 0.00013), alanine transaminase (ALT) (<it>P </it>= 9.1 × 10<sup>-6</sup>), and ferritin levels (<it>P </it>= 0.014), and the fibrosis stage (<it>P </it>= 0.011) in the patients with NAFLD, even after adjustment for age, gender, and BMI. The steatosis grade was not associated with rs738409.</p> <p>Conclusions</p> <p>We found that in the Japanese population, individuals harboring the G-allele of rs738409 were susceptible to NAFLD, and that rs738409 was associated with plasma levels of ALT, AST, and ferritin, and the histological fibrosis stage. Our study suggests that <it>PNPLA3 </it>may be involved in the progression of fibrosis in NAFLD.</p

    Hepatitis C Virus Infection Suppresses the Interferon Response in the Liver of the Human Hepatocyte Chimeric Mouse

    Get PDF
    BACKGROUND AND AIMS: Recent studies indicate that hepatitis C virus (HCV) can modulate the expression of various genes including those involved in interferon signaling, and up-regulation of interferon-stimulated genes by HCV was reported to be strongly associated with treatment outcome. To expand our understanding of the molecular mechanism underlying treatment resistance, we analyzed the direct effects of interferon and/or HCV infection under immunodeficient conditions using cDNA microarray analysis of human hepatocyte chimeric mice. METHODS: Human serum containing HCV genotype 1b was injected into human hepatocyte chimeric mice. IFN-α was administered 8 weeks after inoculation, and 6 hours later human hepatocytes in the mouse livers were collected for microarray analysis. RESULTS: HCV infection induced a more than 3-fold change in the expression of 181 genes, especially genes related to Organismal Injury and Abnormalities, such as fibrosis or injury of the liver (P = 5.90E-16∼3.66E-03). IFN administration induced more than 3-fold up-regulation in the expression of 152 genes. Marked induction was observed in the anti-fibrotic chemokines such as CXCL9, suggesting that IFN treatment might lead not only to HCV eradication but also prevention and repair of liver fibrosis. HCV infection appeared to suppress interferon signaling via significant reduction in interferon-induced gene expression in several genes of the IFN signaling pathway, including Mx1, STAT1, and several members of the CXCL and IFI families (P = 6.0E-12). Genes associated with Antimicrobial Response and Inflammatory Response were also significantly repressed (P = 5.22×10(-10)∼1.95×10(-2)). CONCLUSIONS: These results provide molecular insights into possible mechanisms used by HCV to evade innate immune responses, as well as novel therapeutic targets and a potential new indication for interferon therapy

    Sequential therapies after atezolizumab plus bevacizumab or lenvatinib first-line treatments in hepatocellular carcinoma patients

    Get PDF
    Introduction: The aim of this retrospective proof-of-concept study was to compare different second-line treatments for patients with hepatocellular carcinoma and progressive disease (PD) after first-line lenvatinib or atezolizumab plus bevacizumab.Materials and methods: A total of 1381 patients had PD at first-line therapy. 917 patients received lenvatinib as first-line treatment, and 464 patients atezolizumab plus bevacizumab as first-line.Results: 49.6% of PD patients received a second-line therapy without any statistical difference in overall survival (OS) between lenvatinib (20.6 months) and atezolizumab plus bev-acizumab first-line (15.7 months; p = 0.12; hazard ratio [HR] = 0.80). After lenvatinib first-line, there wasn't any statistical difference between second-line therapy subgroups (p = 0.27; sorafenib HR: 1; immunotherapy HR: 0.69; other therapies HR: 0.85). Patients who under-went trans-arterial chemo-embolization (TACE) had a significative longer OS than patients who received sorafenib (24.7 versus 15.8 months, p &lt; 0.01; HR = 0.64). After atezolizumab plus bevacizumab first-line, there was a statistical difference between second-line therapy subgroups (p &lt; 0.01; sorafenib HR: 1; lenvatinib HR: 0.50; cabozantinib HR: 1.29; other therapies HR: 0.54). Patients who received lenvatinib (17.0 months) and those who under-went TACE (15.9 months) had a significative longer OS than patients treated with sorafenib (14.2 months; respectively, p = 0.01; HR = 0.45, and p &lt; 0.05; HR = 0.46).Conclusion: Approximately half of patients receiving first-line lenvatinib or atezolizumab plus bevacizumab access second-line treatment. Our data suggest that in patients progressed to atezolizumab plus bevacizumab, the systemic therapy able to achieve the longest survival is lenvatinib, while in patients progressed to lenvatinib, the systemic therapy able to achieve the longest survival is immunotherapy

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore