12 research outputs found

    Cranial anatomy and taxonomy of the erythrosuchid archosauriform ‘Vjushkovia triplicostata’ Huene, 1960, from the Early Triassic of European Russia

    Get PDF
    Erythrosuchidae are a globally distributed and important group of apex predators that occupied Early and Middle Triassic terrestrial ecosystems following the Permo-Triassic mass extinction. The stratigraphically oldest known genus of Erythrosuchidae is Garjainia Ochev, 1958, which is known from the late Early Triassic (late Olenekian) of European Russia and South Africa. Two species of Garjainia have been reported from Russia: the type species, Garjainia prima Ochev, 1958, and ‘Vjushkovia triplicostata’ von Huene, 1960, which has been referred to Garjainia as either congeneric (Garjainiatriplicostata) or conspecific (G. prima). The holotype of G. prima has received relatively extensive study, but little work has been conducted on type or referred material attributed to ‘V. triplicostata’. However, this material includes well-preserved fossils representing all parts of the skeleton and comprises seven individuals. Here, we provide a comprehensive description and review of the cranial anatomy of material attributed to ‘V. triplicostata’, and draw comparisons with G. prima. We conclude that the two Russian taxa are indeed conspecific, and that minor differences between them result from a combination of preservation or intraspecific variation. Our reassessment therefore provides additional information on the cranial anatomy of G. prima. Moreover, we quantify relative head size in erythrosuchids and other early archosauromorphs in an explicit phylogenetic context for the first time. Our results show that erythrosuchids do indeed appear to have disproportionately large skulls, but that this is also true for other early archosauriforms (i.e. proterosuchids), and may reflect the invasion of hypercarnivorous niches by these groups following the Permo-Triassic extinction.© 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited

    The craniomandibular anatomy of the early archosauriform Euparkeria capensis

    No full text
    Archosauria (birds, crocodilians and their extinct relatives) form a major part of terrestrial ecosystems today, with over 10 000 living species, and came to dominate the land for most of the Mesozoic (over 150 Myr) after radiating following the Permian–Triassic extinction. The archosaur skull has been essential to this diversification, itself diversified into myriad forms. The archosauriform Euparkeria capensis from the Middle Triassic (Anisian) of South Africa has been of great interest since its initial description in 1913, because its anatomy shed light on the origins and early evolution of crown Archosauria and potentially approached that of the archosaur common ancestor. Euparkeria has been widely used as an outgroup in phylogenetic analyses and when investigating patterns of trait evolution among archosaurs. Although described monographically in 1965, subsequent years have seen great advances in the understanding of early archosaurs and in imaging techniques. Here, the cranium and mandible of Euparkeria are fully redescribed and documented using all fossil material and computed tomographic data. Details previously unclear are fully described, including vomerine dentition, the epiptergoid, number of premaxillary teeth and palatal arrangement. A new diagnosis and cranial and braincase reconstruction is provided, and an anatomical network analysis is performed on the skull of Euparkeria and compared with other amniotes. The modular composition of the cranium suggests a flexible skull well adapted to feeding on agile food, but with a clear tendency towards more carnivorous behaviour, placing the taxon at the interface between ancestral diapsid and crown archosaur ecomorphology, corresponding to increases in brain size, visual sensitivity, upright locomotion and metabolism around this point in archosauriform evolution. The skull of Euparkeria epitomizes a major evolutionary transition, and places crown archosaur morphology in an evolutionary context

    The braincase of a specimen of Proterochampsa Reig (Archosauriformes: Proterochampsidae) from the Late Triassic of Argentina

    No full text
    The proterochampsids are a Triassic group of superficially crocodile-like forms belonging to the Archosauriformes. In the present contribution, we present new information regarding the braincase of the proterochampsid Proterochampsa Reig 1959, from the Ischigualasto Formation (Carnian) of Argentina, and discuss its phylogenetic considerations. Some unique neurocranial features of Proterochampsa are described, including: the prominence and thickness of the V-shaped ridge that surrounds the basisphenoidal fossa; the medially concave lateral arms of the same ridge; and the semilunar depression on the parabasisphenoid ventrolaterally exposed. Other features are only shared with likely unrelated archosauriforms, including: the great lateral development of the basipterygoid processes and caudal development of its distal end; an eight-shaped metotic foramen; laterally directed basipterygoid processes; and rostral boundary of the basisphenoidal recess V-shaped. Proterochampsa differs in many other aspects from the archosauriform Chanaresuchus, including: a proportionally shorter basioccipital basal tubera; cultriform process ovoid in cross-section; longitudinal sulcus dorsal to the basipterygoid process; deep basisphenoidal recess; and the absence of a prominent intertuberal plate. In many braincase features, Proterochampsa is more similar to archosaurs than to Euparkeria, erythrosuchids and Proterosuchus. They include a reduced semilunar depression. A ventral border of the basioccipital forming a wide convexity and a dorsoventrally thin paroccipital process likely represents a feature shared with Chanaresuchus, but not with Doswellia and other basal archosauriforms.Fil: Trotteyn, Maria Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan; ArgentinaFil: Haro, Jose Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones Paleobiológicas; Argentin
    corecore