84 research outputs found

    From the outside to the inside: New insights on the main factors that guide seed dormancy and germination

    Get PDF
    The transition from a dormant to a germinating seed represents a crucial developmental switch in the life cycle of a plant. Subsequent transition from a germinating seed to an autotrophic organism also requires a robust and multi-layered control. Seed germination and seedling growth are multistep processes, involving both internal and external signals, which lead to a fine-tuning control network. In recent years, numerous studies have contributed to elucidate the molecular mechanisms underlying these processes: From light signaling and light-hormone crosstalk to the effects of abiotic stresses, from epigenetic regulation to translational control. However, there are still many open questions and molecular elements to be identified. This review will focus on the different aspects of the molecular control of seed dormancy and germination, pointing out new molecular elements and how these integrate in the signaling pathways already known

    The DOF Transcription Factors in Seed and Seedling Development

    Get PDF
    The DOF (DNA binding with one finger) family of plant-specific transcription factors (TF) was first identified in maize in 1995. Since then, DOF proteins have been shown to be present in the whole plant kingdom, including the unicellular alga Chlamydomonas reinhardtii. The DOF TF family is characterised by a highly conserved DNA binding domain (DOF domain), consisting of a CX2C-X21-CX2C motif, which is able to form a zinc finger structure. Early in the study of DOF proteins, their relevance for seed biology became clear. Indeed, the PROLAMIN BINDING FACTOR (PBF), one of the first DOF proteins characterised, controls the endosperm-specific expression of the zein genes in maize. Subsequently, several DOF proteins from both monocots and dicots have been shown to be primarily involved in seed development, dormancy and germination, as well as in seedling development and other light-mediated processes. In the last two decades, the molecular network underlying these processes have been outlined, and the main molecular players and their interactions have been identified. In this review, we will focus on the DOF TFs involved in these molecular networks, and on their interaction with other proteins

    Application of the zero-range potential model to positron annihilation on molecules

    Full text link
    In this paper we use a zero-range potential (ZRP) method to model positron interaction with molecules. This allows us to investigate the effect of molecular vibrations on positron-molecule annihilation using the van der Waals dimer Kr2 as an example. We also use the ZRP to explore positron binding to polyatomics and examine the dependence of the binding energy on the size of the molecule for alkanes. We find that a second bound state appears for a molecule with ten carbons, similar to recent experimental evidence for such a state emerging in alkanes with twelve carbons.Comment: 14 pages, 6 figures, to be published in Nuclear Instruments and Methods

    A calorimeter coupled with a magnetic spectrometer for the detection of primary cosmic antiprotons

    Get PDF
    A tracking calorimeter made of 3200 brass streamer tubes together with 3200 pick-up strips has been built to complement a magnetic spectrometer in order to detect cosmic antiprotons in space. The characteristics of such a calorimeter, the results of a preliminary test of a prototype as well as the properties of the whole apparatus are presented. The apparatus, designed to operate on a balloon at an altitude of about 40 km, can be considered as a second generation detector, capable in principle to solve the problem of the presence of low energy (≤1 Ge V/c) antiprotons in the cosmic rays which is still open because of the disagreement between the existent experimental data

    Sensory inflow manipulation induces learning-like phenomena in motor behavior

    Get PDF
    © 2020, Springer-Verlag GmbH Germany, part of Springer Nature. Purpose: Perceptual and goal-directed behaviors may be improved by repetitive sensory stimulations without practice-based training. Focal muscle vibration (f-MV) modulating the spatiotemporal properties of proprioceptive inflow is well-suited to investigate the effectiveness of sensory stimulation in influencing motor outcomes. Thus, in this study, we verified whether optimized f-MV stimulation patterns might affect motor control of upper limb movements. Methods: To answer this question, we vibrated the slightly tonically contracted anterior deltoid (AD), posterior deltoid (PD), and pectoralis major muscles in different combinations in forty healthy subjects at a frequency of 100 Hz for 10 min in single or repetitive administrations. We evaluated the vibration effect immediately after f-MV application on upper limb targeted movements tasks, and one week later. We assessed target accuracy, movement mean and peak speed, and normalized Jerk using a 3D optoelectronic motion capture system. Besides, we evaluated AD and PD activity during the tasks using wireless electromyography. Results: We found that f-MV may induce increases (p \u3c 0.05) in movement accuracy, mean speed and smoothness, and changes (p \u3c 0.05) in the electromyographic activity. The main effects of f-MV occurred overtime after repetitive vibration of the AD and PD muscles. Conclusion: Thus, in healthy subjects, optimized f-MV stimulation patterns might over time affect the motor control of the upper limb movement. This finding implies that f-MV may improve the individual’s ability to produce expected motor outcomes and suggests that it may be used to boost motor skills and learning during training and to support functional recovery in rehabilitation

    Study of the granularity for a tracking calorimeter with optimal rejection of proton background in positron detection

    Get PDF
    In this paper we present a Monte Carlo study of a calorimeter response for an experiment to equip the magnetic facility of the USA space station. Main purpose in the design of such a calorimeter is the efficient discrimination between eloctromagnetic and hadronic showers. The estimated rejection power results to be better than 1·10−3 p/e+ for incident particles with energy between 10 GeV and 100GeV

    Transglutaminase Type 2 Regulates ER-Mitochondria Contact Sites by Interacting with GRP75

    Get PDF
    Transglutaminase type 2 (TG2) is a multifunctional enzyme that plays a key role in mitochondria homeostasis under stressful cellular conditions. TG2 interactome analysis reveals an enzyme interaction with GRP75 (glucose-regulated protein 75). GRP75 localizes in mitochondria-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. We demonstrate that the TG2 and GRP75 interaction occurs in MAMs. The absence of the TG2-GRP75 interaction leads to an increase of the interaction between IP3R-3 and GRP75; a decrease of the number of ER-mitochondria contact sites; an impairment of the ER-mitochondrial Ca2+ flux; and an altered profile of the MAM proteome. These findings indicate TG2 is a key regulatory element of the MAMs

    Radiofrequency for chronic lumbosacral and cervical pain:Results of a consensus study using the RAND/UCLA appropriateness method

    Get PDF
    Background: Despite the routine use of radiofrequency (RF) for the treatment of chronic pain in the lumbosacral and cervical region, there remains uncertainty on the most appropriate patient selection criteria. This study aimed to develop appropriateness criteria for RF in relation to relevant patient characteristics, considering RF ablation (RFA) for the treatment of chronic axial pain and pulsed RF (PRF) for the treatment of chronic radicular pain. Methods: The RAND/UCLA Appropriateness Method (RUAM) was used to explore the opinions of a multidisciplinary European panel on the appropriateness of RFA and PRF for a variety of clinical scenarios. Depending on the type of pain (axial or radicular), the expert panel rated the appropriateness of RFA and PRF for a total of 219 clinical scenarios. Results: For axial pain in the lumbosacral or cervical region, appropriateness of RFA was determined by the dominant pain trigger and location of tenderness on palpation with higher appropriateness scores if these variables were suggestive of the diagnosis of facet or sacroiliac joint pain. Although the opinions on the appropriateness of PRF for lumbosacral and cervical radicular pain were fairly dispersed, there was agreement that PRF is an appropriate option for well-selected patients with radicular pain due to herniated disc or foraminal stenosis, particularly in the absence of motor deficits. The panel outcomes were embedded in an educational e-health tool that also covers the psychosocial aspects of chronic pain, providing integrated recommendations on the appropriate use of (P)RF interventions for the treatment of chronic axial and radicular pain in the lumbosacral and cervical region. Conclusions: A multidisciplinary European expert panel established patient-specific recommendations that may support the (pre)selection of patients with chronic axial and radicular pain in the lumbosacral and cervical region for either RFA or PRF (accessible via https://rftool.org). Future studies should validate these recommendations by determining their predictive value for the outcomes of (P)RF interventions.</p
    corecore