7 research outputs found

    Quality of life in sarcoidosis

    Get PDF
    Having sarcoidosis often has a major impact on quality of life of patients and their families. Improving quality of life is prioritized as most important treatment aim by many patients with sarcoidosis, but current evidence and treatment options are limited. In this narrative review, we describe the impact of sarcoidosis on various aspects of daily life, evaluate determinants of health-related quality of life (HRQoL), and provide an overview of the different patient-reported outcome measures to assess HRQoL in sarcoidosis. Moreover, we review the current evidence for pharmacological and non-pharmacological interventions to improve quality of life for people with sarcoidosis.</p

    Acute Motor Neuropathy with Quadriparesis following Treatment with Triple Tyrosine Kinase Inhibitor, Nintedanib

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a rare progressive interstitial lung disease characterized by declining lung function, worsening dyspnea and poor prognosis with median survival of 3–5 years. IPF predominantly affects people over 60 years, it however has worse prognosis in younger patients with genetic predisposition like short telomere syndrome. Nintedanib, one of two anti-fibrotic therapies approved for IPF treatment has occasional neurological side effects like fatigue, dizziness and headaches. Significant polyneuropathy or motor dysfunction is rarely seen. This case report illustrates a patient who developed quadriparesis following initiation of Nintedanib

    Obesity and Weaning from Mechanical Ventilation-” An Exploratory Study

    No full text
    Introduction: Obesity is associated with increased risk of hypercapnic respiratory failure, prolonged duration on mechanical ventilation, and extended weaning periods.Objective: Pilot study to determine whether morbidly obese adult tracheotomized subjects (body mass index [BMI] ⩾ 40) can be more efficiently weaned from the ventilator by optimizing their positive end-expiratory pressure (PEEP) using either an esophageal balloon or the best achieved static effective compliance.Methods: We randomly assigned 25 morbidly obese adult tracheotomized subjects (median [interquartile range] BMI 53.4 [26.4]; range 40.4-113.8) to 1 of 2 methods of setting PEEP; using either titration guided by esophageal balloon to overcome negative transpulmonary pressure (Ptp) (goal Ptp 0-5 cmH2O) (ESO group) or titration to maximize static effective lung compliance (Cstat group). Our outcomes of interest were number of subjects weaned by day 30 and time to wean.Results: At day 30, there was no significant difference in percentage of subjects weaned. 8/13 subjects (62%) in the ESO Group were weaned vs. 9/12(75%) in the Cstat Group (P = 0.67). Among the 17 subjects who weaned, median time to ventilator liberation was significantly shorter in the ESO group: 3.5 days vs Cstat group 14 days (P = .01). Optimal PEEP in the ESO and Cstat groups was similar (ESO mean ± SD = 26.5 ± 5.7 cmH2O and Cstat 24.2 ± 7 cmH2O (P = .38).Conclusions: Optimization of PEEP using esophageal balloon to achieve positive transpulmonary pressure did not change the proportion of patients weaned. Among patients who weaned, use of the esophageal balloon resulted in faster liberation from mechanical ventilation. There were no adverse consequences of the high PEEP (mean 25.4; range 13-37 cmH2O) used in our study. The study was approved by the Institutional Review Board at our institution (UMCIRB#10-0343) and registered with clinicaltrials.gov (NCT02323009)

    Obesity and Weaning from Mechanical Ventilation— An Exploratory Study

    No full text
    Introduction: Obesity is associated with increased risk of hypercapnic respiratory failure, prolonged duration on mechanical ventilation, and extended weaning periods. Objective: Pilot study to determine whether morbidly obese adult tracheotomized subjects (body mass index [BMI] ⩾ 40) can be more efficiently weaned from the ventilator by optimizing their positive end-expiratory pressure (PEEP) using either an esophageal balloon or the best achieved static effective compliance. Methods: We randomly assigned 25 morbidly obese adult tracheotomized subjects (median [interquartile range] BMI 53.4 [26.4]; range 40.4-113.8) to 1 of 2 methods of setting PEEP; using either titration guided by esophageal balloon to overcome negative transpulmonary pressure (Ptp) (goal Ptp 0-5 cmH2O) (ESO group) or titration to maximize static effective lung compliance (Cstat group). Our outcomes of interest were number of subjects weaned by day 30 and time to wean. Results: At day 30, there was no significant difference in percentage of subjects weaned. 8/13 subjects (62%) in the ESO Group were weaned vs. 9/12(75%) in the Cstat Group (P = 0.67). Among the 17 subjects who weaned, median time to ventilator liberation was significantly shorter in the ESO group: 3.5 days vs Cstat group 14 days (P = .01). Optimal PEEP in the ESO and Cstat groups was similar (ESO mean ± SD = 26.5 ± 5.7 cmH2O and Cstat 24.2 ± 7 cmH2O (P = .38). Conclusions: Optimization of PEEP using esophageal balloon to achieve positive transpulmonary pressure did not change the proportion of patients weaned. Among patients who weaned, use of the esophageal balloon resulted in faster liberation from mechanical ventilation. There were no adverse consequences of the high PEEP (mean 25.4; range 13-37 cmH2O) used in our study. The study was approved by the Institutional Review Board at our institution (UMCIRB#10-0343) and registered with clinicaltrials.gov (NCT02323009)

    Obesity and Weaning from Mechanical Ventilation— An Exploratory Study

    No full text
    Introduction: Obesity is associated with increased risk of hypercapnic respiratory failure, prolonged duration on mechanical ventilation, and extended weaning periods.\r\n\r\nObjective: Pilot study to determine whether morbidly obese adult tracheotomized subjects (body mass index [BMI] ? 40) can be more efficiently weaned from the ventilator by optimizing their positive end-expiratory pressure (PEEP) using either an esophageal balloon or the best achieved static effective compliance.\r\n\r\nMethods: We randomly assigned 25 morbidly obese adult tracheotomized subjects (median [interquartile range] BMI 53.4 [26.4]\; range 40.4-113.8) to 1 of 2 methods of setting PEEP\; using either titration guided by esophageal balloon to overcome negative transpulmonary pressure (Ptp) (goal Ptp 0-5 cmH2O) (ESO group) or titration to maximize static effective lung compliance (Cstat group). Our outcomes of interest were number of subjects weaned by day 30 and time to wean.\r\n\r\nResults: At day 30, there was no significant difference in percentage of subjects weaned. 8/13 subjects (62%) in the ESO Group were weaned vs. 9/12(75%) in the Cstat Group (P = 0.67). Among the 17 subjects who weaned, median time to ventilator liberation was significantly shorter in the ESO group: 3.5 days vs Cstat group 14 days (P = .01). Optimal PEEP in the ESO and Cstat groups was similar (ESO mean ± SD = 26.5 ± 5.7 cmH2O and Cstat 24.2 ± 7 cmH2O (P = .38).\r\n\r\nConclusions: Optimization of PEEP using esophageal balloon to achieve positive transpulmonary pressure did not change the proportion of patients weaned. Among patients who weaned, use of the esophageal balloon resulted in faster liberation from mechanical ventilation. There were no adverse consequences of the high PEEP (mean 25.4\; range 13-37 cmH2O) used in our study. The study was approved by the Institutional Review Board at our institution (UMCIRB#10-0343) and registered with clinicaltrials.gov (NCT02323009)

    Health-Related Quality of Life in Sarcoidosis

    No full text
    corecore