477 research outputs found

    Gamma-ray Measurements with LaBr3: Ce Detectors -thinking Outside the Box

    Get PDF
    AbstractRecently developed cerium-doped lanthanum bromide (LaBr3: Ce) scintillation detectors have shown to possess promising properties with respect to the detection of γ-rays compared to previously known materials. In this work however, we demonstrate how these detectors may be used to obtain information not only about γ-rays, but also about neutrons, i.e. thinking”inside” and”outside” the box, respectively. For this purpose γ-rays were detected in coincidence with fission fragments and both their energy and their time-of-flight relative to the instant of a fission event is recorded. By evaluating the time-of-flight distributions of γ-rays, identified as decays of excited states after population by inelastically scattered neutrons inside the scintillation crystal as well as other surrounding materials, we show that it is possible to acquire knowledge from and about the spectrum of incident neutrons. We give three examples for conceivable applications, used to determine geometrical profiles, cross sections and neutron spectra, respectively

    Photofission fragment characteristics of 234, 238U and 232Th in the barrier region

    Get PDF
    The bremstrahlung induced fission of 234, 238U and 232Th has been studied at the superconducting Darmstadt linear accelerator (SDALINAC) in the excitation energy region close to the fission barrier. In this contribution results on the fission fragment mass, total kinetic energy (TKE) and angular distributions will be presented. Fission fragment mass and TKE distributions from 234U were studied for the first time in this energy region. The results have been analyzed in terms of fission modes and a dominant yield of the mass asymmetric standard-2 mode was found in all studied nuclei. No strong dependence of the fission mode weights on the excitation energy of the compound nucleus were found. Correlations between mass, TKE and angular distributions have been investigated in 234U and 232Th. A correlation in form of an increased anisotropy for far-asymmetric masses and low TKE were found in both fissioning systems. A possible interpretation of this correlation in terms of fission modes is discussed

    Recent developments for an active UF6 gas target for photon-induced fission experiments

    Get PDF
    Recent developments for an active uranium-hexafluoride-loaded gas target as well as results on the detector gas properties are presented. The gas of choice is a mixture of argon with small amounts of UF6. This contribution presents the experimental setup and focusses on the electron drift velocity with increasing UF6 content. A time-dependent decrease in electron drift velocity is observed in our setup.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Experimental Studies of Prompt Fission Neutron Energy Spectra

    Get PDF
    AbstractPrompt fission neutron spectra were measured in the reactions 238U(n,f), 235U(n,f) and 237Np(n,f) at different incident neutron energies. The neutrons were detected using a coaxial doped p-terphenyl scintillation detector in coincidence with fission fragments and their time-of-flight was recorded. The properties of the neutron detector were determined and the results are presented in this work. A preliminary neutron detection efficiency was applied to data from the neutron-induced fission of 238U at En = 5.2 MeV, leading to encouraging results

    Neutron-induced Fission Cross Section of240,242Pu

    Get PDF
    A sensitivity analysis for the new generation of fast reactors [Salvatores (2008)] has shown the importance of improved cross section data for several actinides. Among them, the240,242Pu(n,f) cross sections require an accuracy improvement to 1-3% and 3-5%, respectively, from the current level of 6% and 20%. At the Van de Graaff facility of the Institute for Reference Materials and Measurements (JRC-IRMM) the fission cross section of the two isotopes was measured relative to two secondary standard reactions,237Np(n,f) and238U(n,f), using a twin Frisch-grid ionization chamber. The secondary standard reactions were benchmarked through measurements against the primary standard reaction235U(n,f) in the same geometry. Sample masses were determined by means of low-geometry alpha counting or/and a 2p Frisch-grid ionization chamber, with an uncertainty lower than 2%. The neutron flux and the impact of scattering from material between source and target was examined, the largest effect having been found in cross section ratio measurements between a fissile and a fertile isotope. Our240,242Pu(n,f) cross sections are in agreement with previous experimental results and slightly lower than present evaluations. In case of the242Pu(n,f) reaction no evidence for a resonance at En=1.1 MeV was found.Postprint (published version

    Sensitivity of measured fission yields on prompt-neutron corrections

    Full text link
    The amount of emitted prompt neutrons from the fission fragments increases as a function of excitation energy. Yet it is not fully understood whether the increase in \nu(A) as a function of E_{n} is mass dependent. The share of excitation energies among the fragments is still under debate, but there are reasons to believe that the excess in neutron emission originates only from the heavy fragments, leaving \nu_{light}(A) almost unchanged. In this work we investigated the consequences of a mass-dependent increase in \nu(A) on the final mass and energy distributions. The assumptions on \nu(A) are essential when analysing measurements based on the 2E-technique. This choice showed to be significant on the measured observables. For example, the post-neutron emission mass yield distribution revealed changes up to 10-30%. The outcome of this work pinpoint the urgent need to determine \nu(A) experimentally, and in particular, how \nu(A) changes as a function of incident-neutron energy. Until then, many fission yields in the data libraries could be largely affected, since they were analysed based on another assumption on the neutron emission.Comment: 4 pages, 3 figures, Proc. 2013 International Conference on Nuclear Data for Science & Technology (ND2013), March 4-8, 2013, New York, USA, to be published in Nuclear Data Sheet
    corecore