160 research outputs found

    From snapshots to manifolds - a tale of shear flows

    Get PDF
    We propose a novel nonlinear manifold learning from snapshot data and demonstrate its superiority over proper orthogonal decomposition (POD) for shedding-dominated shear flows. Key enablers are isometric feature mapping, Isomap, as encoder and, K-nearest neighbours (KNN) algorithm as decoder. The proposed technique is applied to numerical and experimental datasets including the fluidic pinball, a swirling jet and the wake behind a couple of tandem cylinders. Analysing the fluidic pinball, the manifold is able to describe the pitchfork bifurcation and the chaotic regime with only three feature coordinates. These coordinates are linked to the vortex-shedding phases and the force coefficients. The manifold coordinates of the swirling jet are comparable to the POD mode amplitudes, yet allow for a more distinct and less noise-sensitive manifold identification. A similar observation is made for the wake of two tandem cylinders. The tandem cylinders are aligned and located at a streamwise distance which corresponds to the transition between the single bluff body and the reattachment regimes of vortex shedding. Isomap unveils these two shedding regimes while the Lissajous plot of the first two POD mode amplitudes features a single circle. The reconstruction error of the manifold model is small compared with the fluctuation level, indicating that the low embedding dimensions contain the coherent structure dynamics. The proposed Isomap-KNN manifold learner is expected to be of great importance in estimation, dynamic modelling and control for a large range of configurations with dominant coherent structures.This work has been supported by the Madrid Government (Comunidad de Madrid) under the Multiannual Agreement with Universidad Carlos III de Madrid in the line of 'Fostering Young Doctors Research' (PITUFLOW-CM-UC3M), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation). This work has also been partially supported by the project ARTURO, ref. PID2019-109717RBI00/AEI/10.13039/501100011033, funded by the Spanish State Research Agency. B.R.N. and N.D. acknowledge funding by the National Science Foundation of China (NSFC) through grants 12172109 and 12172111 and 12202121, by the Guandgong province, China, via the Natural Science and Engineering grant 2022A1515011492, by the Shenzhen Research Foundation for Basic Research, China, via grant JCYJ20220531095605012, and HangHua company (Dalian, China) for their scientific support. The authors warmly thank Dr F. Lückoff and Dr M. Raiola for providing the swirling jet and the tandem cylinder data sets. Funding for APC: Universidad Carlos III de Madrid (Read and Publish Carlos III University of Madrid)

    Numerical and experimental evaluation of shock dividers

    Get PDF
    Mitigation of pressure pulsations in the exhaust of a pulse detonation combustor is crucial for operation with a downstream turbine. For this purpose, a device termed the shock divider is designed and investigated. The intention of the divider is to split the leading shock wave into two weaker waves that propagate along separated ducts with different cross sections, allowing the shock waves to travel with different velocities along different paths. The separated shock waves redistribute the energy of the incident shock wave. The shock dynamics inside the divider are investigated using numerical simulations. A second-order dimensional split finite volume MUSCL-scheme is used to solve the compressible Euler equations. Furthermore, low-cost simulations are performed using geometrical shock dynamics to predict the shock wave propagation inside the divider. The numerical simulations are compared to high-speed schlieren images and time-resolved total pressure recording. For the latter, a high-frequency pressure probe is placed at the divider outlet, which is shown to resolve the transient total pressure during the shock passage. Moreover, the separation of the shock waves is investigated and found to grow as the divider duct width ratio increases. The numerical and experimental results allow for a better understanding of the dynamic evolution of the flow inside the divider and inform its capability to reduce the pressure pulsations at the exhaust of the pulse detonation combustor

    On the impact of swirl on the growth of coherent structures

    Full text link

    Nanomechanics and Sodium Permeability of Endothelial Surface Layer Modulated by Hawthorn Extract WS 1442

    Get PDF
    The endothelial glycocalyx (eGC) plays a pivotal role in the physiology of the vasculature. By binding plasma proteins, the eGC forms the endothelial surface layer (ESL) which acts as an interface between bloodstream and endothelial cell surface. The functions of the eGC include mechanosensing of blood flow induced shear stress and thus flow dependent vasodilation. There are indications that levels of plasma sodium concentrations in the upper range of normal and beyond impair flow dependent regulation of blood pressure and may therefore increase the risk for hypertension. Substances, therefore, that prevent sodium induced endothelial dysfunction may be attractive for the treatment of cardiovascular disease. By means of combined atomic force - epifluorescence microscopy we studied the impact of the hawthorn (Crataegus spp.) extract WS 1442, a herbal therapeutic with unknown mechanism of action, on the mechanics of the ESL of ex vivo murine aortae. Furthermore, we measured the impact of WS 1442 on the sodium permeability of endothelial EA.hy 926 cell monolayer. The data show that (i) the ESL contributes by about 11% to the total endothelial barrier resistance for sodium and (ii) WS 1442 strengthens the ESL resistance for sodium up to about 45%. This mechanism may explain some of the vasoprotective actions of this herbal therapeutic

    Validation of simulations in multiphase flow metrology by comparison with experimental video observations

    Get PDF
    One important task in flow metrology is to evaluate the uncertainty in multiphase flow metering. A first important step towards this goal is to establish an accurate computational fluid dynamics (CFD) model of multiphase flows. In this contribution, results of multiphase flow simulations are validated by comparison with experimental data. For the evaluation and quantification of experimental observations, a tool for video analysis has been implemented. This tool extracts the liquid level over time, which is then used for further analysis and comparison with simulation data. Additional relevant parameters are obtained by frequency analysis, which is applied to both, experimental and simulation data. A comparison of the results shows good agreement between experiment and simulation

    Deep learning based liquid level extraction from video observations of gas-liquid flows

    Get PDF
    The slug flow pattern is one of the most common gas–liquid flow patterns in multiphase transportation pipelines, particularly in the oil and gas industry. This flow pattern can cause severe problems for industrial processes. Hence, a detailed description of the spatial distribution of the different phases in the pipe is needed for automated process control and calibration of predictive models. In this paper, a deep-learning based image processing technique is presented that extracts the gas–liquid interface from video observations of multiphase flows in horizontal pipes. The supervised deep learning model consists of a convolutional neural network, which was trained and tested with video data from slug flow experiments. The consistency of the hand-labelled data and the predictions of the trained model have been evaluated in an inter-observer reliability test. The model was further tested with other data sets, which also included recordings of a different flow pattern. It is shown that the presented method provides accurate and reliable predictions of the gas–liquid interface for slug flow as well as for other separate flow patterns. Moreover, it is demonstrated how flow characteristics can be obtained from the results of the deep-learning based image processing technique

    Nano-surgery at the leukocyte–endothelial docking site

    Get PDF
    The endothelium has an important role in controlling the extravasation of leukocytes from blood to tissues. Endothelial permeability for leukocytes is influenced by transmembrane proteins that control inter-endothelial adhesion, as well as steps of the leukocyte transmigration process. In a cascade consisting of leukocyte rolling, adhesion, firm adhesion, and diapedesis, a new step was recently introduced, the formation of a docking structure or “transmigratory cup.” Both terms describe a structure formed by endothelial pseudopods embracing the leukocyte. It has been found associated with both para- and transcellular diapedesis. The aim of this study was to characterize the leukocyte–endothelial contact area in terms of morphology and cell mechanics to investigate how the endothelial cytoskeleton reorganizes to engulf the leukocyte. We used atomic force microscopy (AFM) to selectively remove the leukocyte and then analyze the underlying cell at this specific spot. Firmly attached leukocytes could be removed by AFM nanomanipulation. In few cases, this exposed 8–12 μm wide and 1 μm deep footprints, representing the cup-like docking structure. Some of them were located near endothelial cell junctions. The interaction area did not exhibit significant alterations neither morphologically nor mechanically as compared to the surrounding cell surface. In conclusion, the endothelial invagination is formed without a net depolymerization of f-actin, as endothelial softening at the site of adhesion does not seem to be involved. Moreover, there were no cases of phagocytotic engulfment, but instead the formation of a transmigratory channel could be observed

    Serum sodium concentration and the progression of established chronic kidney disease.

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Nephrology. The final authenticated version is available online at: https://doi.org/10.1007/s40620-018-0541-zBACKGROUND: Higher serum sodium concentration has been reported to be a risk factor for the development of incident chronic kidney disease (CKD), but its relationship with the progression of established CKD has not been investigated. We hypothesised that increased serum sodium concentration is a risk factor for estimated glomerular filtration rate (eGFR) decline in CKD. METHODS: This was a retrospective cohort study using data collected over a 6-year period, with baseline data obtained during the first 2 years. We included patients known to our renal service who had had a minimum of three blood tests every 2 years and an eGFR of < 60 mL/min/1.73 m2 at baseline. Exclusion criteria were renal replacement therapy, diabetes mellitus, heart failure and decompensated liver disease. A multiple linear regression model investigated the relationship between baseline serum sodium and eGFR decline after adjustment for confounding factors. RESULTS: 7418 blood results from 326 patients were included. There was no relationship between serum sodium concentration and estimated glomerular filtration rate at baseline. After multivariable adjustment, a 1 mmol/L increase in baseline serum sodium was associated with a 1.5 mL/min/1.73 m2 decline in eGFR during the study period (95% CI 0.9, 2.0). A reduction in eGFR was not associated with significant changes in serum sodium concentration over 6 years. CONCLUSION: Higher serum sodium concentration is associated with the progression of CKD, independently of other established risk factors. Conversely, significant alterations in serum sodium concentration do not occur with declining kidney function
    corecore