97 research outputs found

    Human Pancreatic Islet Isolation: Part II: Purification and Culture of Human Islets

    Get PDF
    Management of Type 1 diabetes is burdensome, both to the individual and society, costing over 100 billion dollars annually. Despite the widespread use of glucose monitoring and new insulin formulations, many individuals still develop devastating secondary complications. Pancreatic islet transplantation can restore near normal glucose control in diabetic patients 1, without the risk of serious hypoglycemic episodes that are associated with intensive insulin therapy. Providing sufficient islet mass is important for successful islet transplantation. However, donor characteristics, organ procurement and preservation affect the isolation outcome 2. At University of Illinois at Chicago (UIC) we developed a successful isolation protocol with an improved purification gradient 3. The program started in January 2004 and more than 300 isolations were performed up to November 2008. The pancreata were sent in cold preservation solutions (UW, University of Wisconsin or HTK, Histidine-Tryptophan Ketoglutarate) 4-7 to the Cell Isolation Laboratory at UIC for islet isolation. Pancreatic islets were isolated using the UIC method, which is a modified version of the method originally described by Ricordi et al8. As described in Part I: Digestion and Collection of Pancreatic Tissue, human pancreas was trimmed, cannulated, perfused, and digested. After collection and at least 30 minutes of incubation in UW solution, the tissue was loaded in the cell separator (COBE 2991, Cobe, Lakewood, CO) for purification 3. Following purification, islet yield (expressed as islet equivalents, IEQ), tissue volume, and purity was determined according to standard methods 9. Isolated islets were cultured in CMRL-1066 media (Mediatech, Herndon, VA), supplemented with 1.5% human albumin, 0.1% insulin-transferrin-selenium (ITS), 1 ml of Ciprofloxacin, 5 ml o f 1M HEPES, and 14.5 ml of 7.5% Sodium Bicarbonate in T175 flasks at 37°C overnight culture before islets were transplanted or used for research

    Angiopoetin-2 signals do not mediate the hypervascularization of islets in type 2 diabetes

    Get PDF
    Aims Changes in the islet vasculature have been implicated in the regulation of β-cell survival and function during the progression to type 2 diabetes (T2D). Failure of the β-cell to compensate for the increased insulin demand in obesity eventually leads to diabetes; as a result of the complex interplay of genetic and environmental factors (e.g. ongoing inflammation within the islets) and impaired vascular function. The Angiopoietin/Tie (Ang/Tie) angiogenic system maintains vasculature and is closely related to organ inflammation and angiogenesis. In this study we aimed to identify whether the vessel area within the islets changes in diabetes and whether such changes would be triggered by the Tie-antagonist Ang-2. Methods Immunohistochemical and qPCR analyses to follow islet vascularization and Ang/Tie levels were performed in human pancreatic autopsies and isolated human and mouse islets. The effect of Ang-2 was assessed in β-cell-specific Ang-2 overexpressing mice during high fat diet (HFD) feeding. Results Islet vessel area was increased in autopsy pancreases from patients with T2D. The vessel markers Tie-1, Tie-2 and CD31 were upregulated in mouse islets upon HFD feeding from 8 to 24 weeks. Ang-2 was transiently upregulated in mouse islets at 8 weeks of HFD and under glucolipotoxic conditions (22.2 mM glucose/ 0.5 mM palmitate) in vitro in human and mouse islets, in contrast to its downregulation by cytokines (IL-1β, IFN- and TNF-α). Ang-1 on the other hand was oppositely regulated, with a significant loss under glucolipotoxic condition, a trend to reduce in islets from patients with T2D and an upregulation by cytokines. Modulation of such changes in Ang-2 by its overexpression or the inhibition of its receptor Tie-2 impaired β-cell function at basal conditions but protected islets from cytokine induced apoptosis. In vivo, β-cell-specific Ang-2 overexpression in mice induced hypervascularization under normal diet but contrastingly led to hypovascularized islets in response to HFD together with increased apoptosis and reduced β-cell mass. Conclusions Islet hypervascularization occurs in T2D. A balanced expression of the Ang1/Ang2 system is important for islet physiology. Ang-2 prevents β-cell mass and islet vascular adaptation in response to HFD feeding with no major influence on glucose homeostasis

    Robot-assisted pancreatoduodenectomy with preservation of the vascular supply for autologous islet cell isolation and transplantation: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>For patients with chronic pancreatitis presenting with medically intractable abdominal pain, surgical intervention may be the only treatment option. However, extensive pancreatic resections are typically performed open and are associated with a substantial amount of postoperative pain, wound complications and long recovery time. Minimally invasive surgery offers an avenue to improve results; however, current limitations of laparoscopic surgery render its application in the setting of chronic pancreatitis technically demanding. Additionally, pancreatic resections are associated with a high incidence of diabetes. Transplantation of islets isolated from the resected pancreas portion offers a way to prevent post-surgical diabetes; however, preservation of the vascular supply during pancreatic resection, which determines islet cell viability, is technically difficult using current laparoscopic approaches. With recent advances in the surgical field, robotic surgery now provides a means to overcome these obstacles to achieve the end goals of pain relief and preserved endocrine function. We present the first report of a novel, minimally invasive robotic approach for resection of the pancreatic head that preserves vascular supply and enables the isolation of a high yield of viable islets for transplantation.</p> <p>Case presentation</p> <p>A 35-year old Caucasian woman presented with intractable chronic abdominal pain secondary to chronic pancreatitis, with a stricture of her main pancreatic duct at the level of the ampulla of Vater and distal dilatation. She was offered a robotic-assisted pylorus-preserving pancreatoduodenectomy and subsequent islet transplantation, to both provide pain relief and preserve insulin-secretory reserves.</p> <p>Conclusion</p> <p>We present a novel, minimally invasive robotic approach for resection of the pancreatic head with complete preservation of the vascular supply, minimal warm ischemia time (less than three minutes) and excellent islet recovery (134,727 islet equivalent). Our patient is currently pain-free with normal glycemic control. Robot-assisted pylorus-preserving pancreatoduodenectomy and autologous islet transplantation can be safely performed and has the potential to minimize operative traumas as well as to partially preserve endocrine function. Results from this case report suggest that this dual procedure should be considered as a treatment option for patients with chronic pancreatitis at earlier stages of the disease, before irreversible islet loss occurs.</p

    Cerebrospinal fluid HIV-1 escape in patients with neurocognitive symptoms: pooled data from a neuro-HIV platform and the NAMACO study.

    Get PDF
    BACKGROUND Despite modern antiretroviral therapy, HIV-1 RNA escape into the cerebrospinal fluid (CSF) may occur. We examined the prevalence of and factors associated with CSF HIV-1 escape among people living with HIV (PLWH) in Switzerland. SETTING The Neurocognitive Assessment in the Metabolic and Aging Cohort (NAMACO) study is an ongoing, prospective, longitudinal, multicenter study within the Swiss HIV Cohort Study. The neuro-HIV platform is a multi-disciplinary, single-day outpatient consultation at Lausanne University Hospital. METHODS We pooled data from the NAMACO study and the neuro-HIV platform participants who underwent lumbar puncture (LP) between 2011 and 2019. Both patient groups had neurocognitive symptoms. CSF HIV-1 escape was defined as the presence of quantifiable CSF HIV-1 RNA when plasma HIV-1 RNA was suppressed or CSF HIV-1 RNA greater than plasma HIV-1 RNA when the latter was detectable. RESULTS Of 1166 PLWH assessed, 288 underwent LP. CSF HIV-1 escape was observed in 25 PLWH (8.7%) of whom 19 (76%) had supressed plasma HIV-1 RNA. Characteristics of PLWH were comparable whether they had CSF HIV-1 escape or not, including comorbidities, time since HIV diagnosis (15 vs 16 years, p=0.9), median CD4 nadir (158.5/mm3 vs 171/mm3, p=0.6), antiretroviral CSF-Penetration-Effectiveness score (7 vs 7 points, p=0.8), neurocognitive diagnosis based on Frascati criteria and radiological findings. CONCLUSIONS In this large pooled sample of PLWH with neurocognitive symptoms, CSF HIV-1 escape occurred in 8.7% of PLWH. PLWH with CSF HIV-1 escape presented no distinctive clinical or paraclinical characteristics. We conclude that LP is unavoidable in confirming CSF HIV-1 escape

    Inhibition of PHLPP1/2 phosphatases rescues pancreatic β-cells in diabetes

    Get PDF
    Pancreatic β-cell failure is the key pathogenic element of the complex metabolic deterioration in type 2 diabetes (T2D); its underlying pathomechanism is still elusive. Here, we identify pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 (PHLPP1/2) as phosphatases whose upregulation leads to β-cell failure in diabetes. PHLPP levels are highly elevated in metabolically stressed human and rodent diabetic β-cells. Sustained hyper-activation of mechanistic target of rapamycin complex 1 (mTORC1) is the primary mechanism of the PHLPP upregulation linking chronic metabolic stress to ultimate β-cell death. PHLPPs directly dephosphorylate and regulate activities of β-cell survival-dependent kinases AKT and MST1, constituting a regulatory triangle loop to control β-cell apoptosis. Genetic inhibition of PHLPPs markedly improves β-cell survival and function in experimental models of diabetes in vitro, in vivo, and in primary human T2D islets. Our study presents PHLPPs as targets for functional regenerative therapy of pancreatic β cells in diabetes

    The Antimicrobial Peptide Histatin-5 Causes a Spatially Restricted Disruption on the Candida albicans Surface, Allowing Rapid Entry of the Peptide into the Cytoplasm

    Get PDF
    Antimicrobial peptides play an important role in host defense against microbial pathogens. Their high cationic charge and strong amphipathic structure allow them to bind to the anionic microbial cell membrane and disrupt the membrane bilayer by forming pores or channels. In contrast to the classical pore-forming peptides, studies on histatin-5 (Hst-5) have suggested that the peptide is transported into the cytoplasm of Candida albicans in a non-lytic manner, and cytoplasmic Hst-5 exerts its candicidal activities on various intracellular targets, consistent with its weak amphipathic structure. To understand how Hst-5 is internalized, we investigated the localization of FITC-conjugated Hst-5. We find that Hst-5 is internalized into the vacuole through receptor-mediated endocytosis at low extracellular Hst-5 concentrations, whereas under higher physiological concentrations, Hst-5 is translocated into the cytoplasm through a mechanism that requires a high cationic charge on Hst-5. At intermediate concentrations, two cell populations with distinct Hst-5 localizations were observed. By cell sorting, we show that cells with vacuolar localization of Hst-5 survived, while none of the cells with cytoplasmic Hst-5 formed colonies. Surprisingly, extracellular Hst-5, upon cell surface binding, induces a perturbation on the cell surface, as visualized by an immediate and rapid internalization of Hst-5 and propidium iodide or rhodamine B into the cytoplasm from the site using time-lapse microscopy, and a concurrent rapid expansion of the vacuole. Thus, the formation of a spatially restricted site in the plasma membrane causes the initial injury to C. albicans and offers a mechanism for its internalization into the cytoplasm. Our study suggests that, unlike classical channel-forming antimicrobial peptides, action of Hst-5 requires an energized membrane and causes localized disruptions on the plasma membrane of the yeast. This mechanism of cell membrane disruption may provide species-specific killing with minimal damage to microflora and the host and may be used by many other antimicrobial peptides

    Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates

    Get PDF
    The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large library of variants of one of the most widely used hydrogel biomaterials, alginate. We evaluated the materials in vivo and identified three triazole-containing analogs that substantially reduce foreign body reactions in both rodents and, for at least 6 months, in non-human primates. The distribution of the triazole modification creates a unique hydrogel surface that inhibits recognition by macrophages and fibrous deposition. In addition to the utility of the compounds reported here, our approach may enable the discovery of other materials that mitigate the foreign body response.Leona M. and Harry B. Helmsley Charitable Trust (3-SRA-2014-285-M-R)United States. National Institutes of Health (EB000244)United States. National Institutes of Health (EB000351)United States. National Institutes of Health (DE013023)United States. National Institutes of Health (CA151884)United States. National Institutes of Health (P41EB015871-27)National Cancer Institute (U.S.) (P30-CA14051
    corecore