1,546 research outputs found

    The diving beetles of the Kuril Archipelago in the Far East of Russia (Coleoptera: Dytiscidae).

    Get PDF
    Nach Literaturangaben sowie Untersuchungen von Museumsmaterial und Ausbeuten der in den letzten Jahren durchgeführten Expeditionen sind die Schwimmkäfer (Dytiscidae) auf den Kurilen im Nordwest-Pazifik mit 24 Arten vertreten. Über die 357 adulten und 50 larvalen Dytisciden, die während der gemeinsamen amerikanisch-japanisch-russischen Expedition 1994 und 1995 auf den südlichen und mittleren Kurilen gesammelt wurden, wird detailliert berichtet. Die folgenden fünf Arten werden erstmals für die Kurilen nachgewiesen: Hydroporus uenoi Nakane, Platambus pictipennis (Sharp), Agabus japonicus Sharp, Ilybius nakanei Nilsson, und Graphoderus zonatus (Hoppe). Die Zahl der auf den einzelnen Inseln festgestellten Arten lag zwischen 1 und 11; den höchsten Artenreichtum zeigen die größten Inseln auf beiden Seiten des Großen Kurilen-Kamms. Auf den südlichen Kurilen dominieren die ussurisch-japanischen Arten, die auch von Sakhalin und Hokkaido bekannt sind, während sich die Fauna der nördlichen Kurilen durch einen hohen Anteil holarktischer und paläarktischer Arten auszeichnet, die auch in Kamtschatka vorkommen.The species of predaceous diving beetles (Coleoptera, Dytiscidae) ocurring in the Kuril Archipelago in the northwest Pacific are reviewed. Based on literature records, the study of museum collections, and material from recent expeditions 24 species are known from the archipelago. A detailed report is given on the 357 adult and 50 larval specimens collected in the South and Mid Kuril Islands by the joint American-Japanese-Russian expeditions in 1994 and 1995. The following five species are here recorded from the Kurils for the first time: Hydroporus uenoi Nakane, Platambus pictipennis (Sharp), Agabus japonicus Sharp, Ilybius nakanei Nilsson, and Graphoderus zonatus (Hoppe). The number of species recorded on individual islands ranged from 1 to 11, with the largest islands at either end of the Greater Kuril Ridge being the most diverse. The South Kurils are dominated by Ussurian-Japanese species known also from Sakhalin and Hokkaido, whereas the North Kuril fauna includes a high proportion of Holarctic or Palearctic species known also from Kamchatka

    Implementation of workflow engine technology to deliver basic clinical decision support functionality

    Get PDF
    BACKGROUND: Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. RESULTS: We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. CONCLUSIONS: We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform

    Spin coherent quantum transport of electrons between defects in diamond

    Get PDF
    The nitrogen-vacancy color center in diamond has rapidly emerged as an important solid-state system for quantum information processing. While individual spin registers have been used to implement small-scale diamond quantum computing, the realization of a large-scale device requires development of an on-chip quantum bus for transporting information between distant qubits. Here we propose a method for coherent quantum transport of an electron and its spin state between distant NV centers. Transport is achieved by the implementation of spatial stimulated adiabatic Raman passage through the optical control of the NV center charge states and the confined conduction states of a diamond nanostructure. Our models show that for two NV centers in a diamond nanowire, high fidelity transport can be achieved over distances of order hundreds of nanometres in timescales of order hundreds of nanoseconds. Spatial adiabatic passage is therefore a promising option for realizing an on-chip spin quantum bus
    corecore