7 research outputs found
Micromotion-enhanced fast entangling gates for trapped-ion quantum computing
Radio-frequency-induced micromotion in trapped ion systems is typically minimized or circumvented to avoid off-resonant couplings for adiabatic processes such as multi-ion gate operations. Nonadiabatic entangling gates (so-called "fast gates") do not require resolution of specific motional sidebands and are, therefore, not limited to time scales longer than the trapping period. We find that fast gates designed for micromotion-free environments have a significantly reduced fidelity in the presence of micromotion. We show that when fast gates are designed to account for the radio-frequency-induced micromotion, they can, in fact, outperform fast gates in the absence of micromotion. The state-dependent force due to the laser induces energy shifts that are amplified by the state-independent forces producing the micromotion. This enhancement is present for all trapping parameters and is robust to realistic sources of experimental error. This result paves the way for fast two-qubit entangling gates on scalable two-dimensional architectures, where micromotion is necessarily present on at least one interion axis.This research was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian
Government
Spin coherent quantum transport of electrons between defects in diamond
The nitrogen-vacancy color center in diamond has rapidly emerged as an
important solid-state system for quantum information processing. While
individual spin registers have been used to implement small-scale diamond
quantum computing, the realization of a large-scale device requires development
of an on-chip quantum bus for transporting information between distant qubits.
Here we propose a method for coherent quantum transport of an electron and its
spin state between distant NV centers. Transport is achieved by the
implementation of spatial stimulated adiabatic Raman passage through the
optical control of the NV center charge states and the confined conduction
states of a diamond nanostructure. Our models show that for two NV centers in a
diamond nanowire, high fidelity transport can be achieved over distances of
order hundreds of nanometres in timescales of order hundreds of nanoseconds.
Spatial adiabatic passage is therefore a promising option for realizing an
on-chip spin quantum bus
Optimized fast gates for quantum computing with trapped ions
We present an efficient approach to optimizing pulse sequences for implementing fast entangling two-qubit gates on trapped ion quantum information processors. We employ a two-phase procedure for optimizing gate fidelity, which we demonstrate for multi-ion systems in linear Paul trap and microtrap architectures. The first phase involves a global optimization over a computationally inexpensive cost function constructed under strong approximations of the gate dynamics. The second phase involves local optimizations that utilize a more precise ordinary differential equation description of the gate dynamics, which captures the nonlinearity of the Coulomb interaction and the effects of finite laser repetition rate. We propose two gate schemes that are compatible with this approach, and we demonstrate that they outperform existing schemes in terms of achievable gate speed and fidelity for feasible laser repetition rates. In optimizing sub-microsecond gates in microtrap architectures, the proposed schemes achieve orders-of-magnitude-higher fidelities than previous proposals. Finally, we investigate the impact of pulse imperfections on gate fidelity and evaluate error bounds for a range of gate speedsThis research was undertaken with the assistance of resources from the National Computational Infrastructure (NCI
Australia), an NCRIS enabled capability supported by the
Australian Government
Solution to Electric Field Screening in Diamond Quantum Electrometers
There are diverse interdisciplinary applications for nanoscale-resolution electrometry of elementary charges under ambient conditions. These include characterization of two-dimensional electronics, charge transfer in biological systems, and measurement of fundamental physical phenomena. The nitrogen-vacancy center in diamond is uniquely capable of such measurements, however electrometry thus far has been limited to charges within the same diamond lattice. It has been hypothesized that the failure to detect charges external to diamond is due to quenching and surface screening, but no proof, model, or design to overcome this has yet been proposed. In this work we affirm this hypothesis through a comprehensive theoretical model of screening and quenching within a diamond electrometer and propose a solution using controlled nitrogen doping and a fluorine-terminated surface. We conclude that successful implementation requires further work to engineer diamond surfaces with lower surface-defect concentrations.We acknowledge funding from the Australian Research
Council (DP170102735
Spin coherent quantum transport of electrons between defects in diamond
The nitrogen-vacancy (NV) color center in diamond has rapidly emerged as an important solid-state system for quantum information processing. Whereas individual spin registers have been used to implement small-scale diamond quantum computing, the realization of a large-scale device requires the development of an on-chip quantum bus for transporting information between distant qubits. Here, we propose a method for coherent quantum transport of an electron and its spin state between distant NV centers. Transport is achieved by the implementation of spatial stimulated adiabatic Raman passage through the optical control of the NV center charge states and the confined conduction states of a diamond nanostructure. Our models show that, for two NV centers in a diamond nanowire, high-fidelity transport can be achieved over distances of order hundreds of nanometers in timescales of order hundreds of nanoseconds. Spatial adiabatic passage is therefore a promising option for realizing an on-chip spin quantum bus