36 research outputs found

    Analysis of MicroRNA Expression in Embryonic Developmental Toxicity Induced by MC-RR

    Get PDF
    As cynobacterial blooms frequently occur in fresh waters throughout the world, microcystins (MCs) have caused serious damage to both wildlife and human health. MCs are known to have developmental toxicity, however, the possible molecular mechanism is largely unknown. This is the first toxicological study to integrate post-transcriptomic, proteomic and bioinformatics analysis to explore molecular mechanisms for developmental toxicity of MCs in zebrafish. After being microinjected directly into embryos, MC-RR dose-dependently decreased survival rates and increased malformation rates of embryos, causing various embryo abnormalities including loss of vascular integrity and hemorrhage. Expressions of 31 microRNAs (miRNAs) and 78 proteins were significantly affected at 72 hours post-fertilisation (hpf). Expressions of miR-430 and miR-125 families were also significantly changed. The altered expressions of miR-31 and miR-126 were likely responsible for the loss of vascular integrity. MC-RR significantly reduced the expressions of a number of proteins involved in energy metabolism, cell division, protein synthesis, cytoskeleton maintenance, response to stress and DNA replication. Bioinformatics analysis shows that several aberrantly expressed miRNAs and proteins (involved in various molecular pathways) were predicted to be potential MC-responsive miRNA-target pairs, and that their aberrant expressions should be the possible molecular mechanisms for the various developmental defects caused by MC-RR

    Integrated Proteomic and Transcriptomic Investigation of the Acetaminophen Toxicity in Liver Microfluidic Biochip

    Get PDF
    Microfluidic bioartificial organs allow the reproduction of in vivo-like properties such as cell culture in a 3D dynamical micro environment. In this work, we established a method and a protocol for performing a toxicogenomic analysis of HepG2/C3A cultivated in a microfluidic biochip. Transcriptomic and proteomic analyses have shown the induction of the NRF2 pathway and the related drug metabolism pathways when the HepG2/C3A cells were cultivated in the biochip. The induction of those pathways in the biochip enhanced the metabolism of the N-acetyl-p-aminophenol drug (acetaminophen-APAP) when compared to Petri cultures. Thus, we observed 50% growth inhibition of cell proliferation at 1 mM in the biochip, which appeared similar to human plasmatic toxic concentrations reported at 2 mM. The metabolic signature of APAP toxicity in the biochip showed similar biomarkers as those reported in vivo, such as the calcium homeostasis, lipid metabolism and reorganization of the cytoskeleton, at the transcriptome and proteome levels (which was not the case in Petri dishes). These results demonstrate a specific molecular signature for acetaminophen at transcriptomic and proteomic levels closed to situations found in vivo. Interestingly, a common component of the signature of the APAP molecule was identified in Petri and biochip cultures via the perturbations of the DNA replication and cell cycle. These findings provide an important insight into the use of microfluidic biochips as new tools in biomarker research in pharmaceutical drug studies and predictive toxicity investigations

    The project VALIMAR (Validation of biomarkers for the assessment of small stream pollution): objectives, experimental design, summary of results, and recommendations for the application of biomarkers in risk assessment

    No full text
    Triebskorn R, Böhmer J, Braunbeck T, et al. The project VALIMAR (Validation of biomarkers for the assessment of small stream pollution): objectives, experimental design, summary of results, and recommendations for the application of biomarkers in risk assessment. Journal of Aquatic Ecosystem Stress and Recovery. 2001;8:161-178
    corecore