145 research outputs found

    c-Kit-Mediated Functional Positioning of Stem Cells to Their Niches Is Essential for Maintenance and Regeneration of Adult Hematopoiesis

    Get PDF
    The mechanism by which hematopoietic stem and progenitor cells (HSPCs) through interaction with their niches maintain and reconstitute adult hematopoietic cells is unknown. To functionally and genetically track localization of HSPCs with their niches, we employed novel mutant loxPs, lox66 and lox71 and Cre-recombinase technology to conditionally delete c-Kit in adult mice, while simultaneously enabling GFP expression in the c-Kit-deficient cells. Conditional deletion of c-Kit resulted in hematopoietic failure and splenic atrophy both at steady state and after marrow ablation leading to the demise of the treated adult mice. Within the marrow, the c-Kit-expressing GFP+ cells were positioned to Kit ligand (KL)-expressing niche cells. This c-Kit-mediated cellular adhesion was essential for long-term maintenance and expansion of HSPCs. These results lay the foundation for delivering KL within specific niches to maintain and restore hematopoiesis

    The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution

    Get PDF
    Crucial transitions in cancerβ€”including tumor initiation, local expansion, metastasis, and therapeutic resistanceβ€”involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer

    Peptide Ligands for Pro-survival Protein Bfl-1 from Computationally Guided Library Screening

    Get PDF
    Pro-survival members of the Bcl-2 protein family inhibit cell death by binding short helical BH3 motifs in pro-apoptotic proteins. Mammalian pro-survival proteins Bcl-x[subscript L], Bcl-2, Bcl-w, Mcl-1, and Bfl-1 bind with varying affinities and specificities to native BH3 motifs, engineered peptides, and small molecules. Biophysical studies have determined interaction patterns for these proteins, particularly for the most-studied family members Bcl-x[subscript L] and Mcl-1. Bfl-1 is a pro-survival protein implicated in preventing apoptosis in leukemia, lymphoma, and melanoma. Although Bfl-1 is a promising therapeutic target, relatively little is known about its binding preferences. We explored the binding of Bfl-1 to BH3-like peptides by screening a peptide library that was designed to sample a high degree of relevant sequence diversity. Screening using yeast-surface display led to several novel high-affinity Bfl-1 binders and to thousands of putative binders identified through deep sequencing. Further screening for specificity led to identification of a peptide that bound to Bfl-1 with K[subscript d] < 1 nM and very slow dissociation from Bfl-1 compared to other pro-survival Bcl-2 family members. A point mutation in this sequence gave a peptide with ~50 nM affinity for Bfl-1 that was selective for Bfl-1 in equilibrium binding assays. Analysis of engineered Bfl-1 binders deepens our understanding of how the binding profiles of pro-survival proteins differ and may guide the development of targeted Bfl-1 inhibitors.National Institute of General Medical Sciences (U.S.) (Award GM084181)National Institute of General Medical Sciences (U.S.) (Award P50-GM68762

    Dietary Restriction: Standing Up For Sirtuins

    Get PDF
    We believe that L. Fontana, L. Partridge, and V. D. Longo should have included a discussion of sirtuins in their Review β€œExtending healthy life spanβ€”From yeast to humans” (16 April, p. 321). We also believe that some of the references used are misleading. The authors state that the purpose of their Review is to β€œconsider the role of nutrient-sensing signaling pathways in mediating the beneficial effects of dietary restriction.” Yet there was no mention of the sirtuins, a family of critically important nutrient-sensing proteins that promote health span from yeast to mammals, as shown by more than 1000 peer-reviewed publications from labs around the world. The authors state that β€œ[i]t is unlikely that a single, linear pathway mediates the effects of dietary restriction in any organism,” and we agree. Indeed, the aging field now recognizes that healthy life span is under the influence of several nutrient-sensing pathways, and there is at least as much evidence for the involvement of sirtuins in the dietary restriction response as for any of the pathways discussed in the Review

    Discovery and Annotation of Functional Chromatin Signatures in the Human Genome

    Get PDF
    Transcriptional regulation in human cells is a complex process involving a multitude of regulatory elements encoded by the genome. Recent studies have shown that distinct chromatin signatures mark a variety of functional genomic elements and that subtle variations of these signatures mark elements with different functions. To identify novel chromatin signatures in the human genome, we apply a de novo pattern-finding algorithm to genome-wide maps of histone modifications. We recover previously known chromatin signatures associated with promoters and enhancers. We also observe several chromatin signatures with strong enrichment of H3K36me3 marking exons. Closer examination reveals that H3K36me3 is found on well-positioned nucleosomes at exon 5β€² ends, and that this modification is a global mark of exon expression that also correlates with alternative splicing. Additionally, we observe strong enrichment of H2BK5me1 and H4K20me1 at highly expressed exons near the 5β€² end, in contrast to the opposite distribution of H3K36me3-marked exons. Finally, we also recover frequently occurring chromatin signatures displaying enrichment of repressive histone modifications. These signatures mark distinct repeat sequences and are associated with distinct modes of gene repression. Together, these results highlight the rich information embedded in the human epigenome and underscore its value in studying gene regulation

    Sirtinol Treatment Reduces Inflammation in Human Dermal Microvascular Endothelial Cells

    Get PDF
    Histone deacetylases (HDAC) are key enzymes in the epigenetic control of gene expression. Recently, inhibitors of class I and class II HDAC have been successfully employed for the treatment of different inflammatory diseases such as rheumatoid arthritis, colitis, airway inflammation and asthma. So far, little is known so far about a similar therapeutic effect of inhibitors specifically directed against sirtuins, the class III HDAC. In this study, we investigated the expression and localization of endogenous sirtuins in primary human dermal microvascular endothelial cells (HDMEC), a cell type playing a key role in the development and maintenance of skin inflammation. We then examined the biological activity of sirtinol, a specific sirtuin inhibitor, in HDMEC response to pro-inflammatory cytokines. We found that, even though sirtinol treatment alone affected only long-term cell proliferation, it diminishes HDMEC inflammatory responses to tumor necrosis factor (TNF)Ξ± and interleukin (IL)-1Ξ². In fact, sirtinol significantly reduced membrane expression of adhesion molecules in TNFΓ£- or IL-1Ξ²-stimulated cells, as well as the amount of CXCL10 and CCL2 released by HDMEC following TNFΞ± treatment. Notably, sirtinol drastically decreased monocyte adhesion on activated HDMEC. Using selective inhibitors for Sirt1 and Sirt2, we showed a predominant involvement of Sirt1 inhibition in the modulation of adhesion molecule expression and monocyte adhesion on activated HDMEC. Finally, we demonstrated the in vivo expression of Sirt1 in the dermal vessels of normal and psoriatic skin. Altogether, these findings indicated that sirtuins may represent a promising therapeutic target for the treatment of inflammatory skin diseases characterized by a prominent microvessel involvement

    The SIRT1 Deacetylase Suppresses Intestinal Tumorigenesis and Colon Cancer Growth

    Get PDF
    Numerous longevity genes have been discovered in model organisms and altering their function results in prolonged lifespan. In mammals, some have speculated that any health benefits derived from manipulating these same pathways might be offset by increased cancer risk on account of their propensity to boost cell survival. The Sir2/SIRT1 family of NAD+-dependent deacetylases is proposed to underlie the health benefits of calorie restriction (CR), a diet that broadly suppresses cancer in mammals. Here we show that CR induces a two-fold increase SIRT1 expression in the intestine of rodents and that ectopic induction of SIRT1 in a Ξ²-catenin-driven mouse model of colon cancer significantly reduces tumor formation, proliferation, and animal morbidity in the absence of CR. We show that SIRT1 deacetylates Ξ²-catenin and suppresses its ability to activate transcription and drive cell proliferation. Moreover, SIRT1 promotes cytoplasmic localization of the otherwise nuclear-localized oncogenic form of Ξ²-catenin. Consistent with this, a significant inverse correlation was found between the presence of nuclear SIRT1 and the oncogenic form of Ξ²βˆ’catenin in 81 human colon tumor specimens analyzed. Taken together, these observations show that SIRT1 suppresses intestinal tumor formation in vivo and raise the prospect that therapies targeting SIRT1 may be of clinical use in Ξ²βˆ’catenin-driven malignancies

    Dynamic Chromatin Localization of Sirt6 Shapes Stress- and Aging-Related Transcriptional Networks

    Get PDF
    The sirtuin Sirt6 is a NAD-dependent histone deacetylase that is implicated in gene regulation and lifespan control. Sirt6 can interact with the stress-responsive transcription factor NF-ΞΊB and regulate some NF-ΞΊB target genes, but the full scope of Sirt6 target genes as well as dynamics of Sirt6 occupancy on chromatin are not known. Here we map Sirt6 occupancy on mouse promoters genome-wide and show that Sirt6 occupancy is highly dynamic in response to TNF-Ξ±. More than half of Sirt6 target genes are only revealed upon stress-signaling. The majority of genes bound by NF-ΞΊB subunit RelA recruit Sirt6, and dynamic Sirt6 relocalization is largely driven in a RelA-dependent manner. Integrative analysis with global gene expression patterns in wild-type, Sirt6βˆ’/βˆ’, and double Sirt6βˆ’/βˆ’ RelAβˆ’/βˆ’ cells reveals the epistatic relationships between Sirt6 and RelA in shaping diverse temporal patterns of gene expression. Genes under the direct joint control of Sirt6 and RelA include several with prominent roles in cell senescence and organismal aging. These data suggest dynamic chromatin relocalization of Sirt6 as a key output of NF-ΞΊB signaling in stress response and aging

    An shRNA-Based Screen of Splicing Regulators Identifies SFRS3 as a Negative Regulator of IL-1Ξ² Secretion

    Get PDF
    The generation of diversity and plasticity of transcriptional programs are key components of effective vertebrate immune responses. The role of Alternative Splicing has been recognized, but it is underappreciated and poorly understood as a critical mechanism for the regulation and fine-tuning of physiological immune responses. Here we report the generation of loss-of-function phenotypes for a large collection of genes known or predicted to be involved in the splicing reaction and the identification of 19 novel regulators of IL-1Ξ² secretion in response to E. coli challenge of THP-1 cells. Twelve of these genes are required for IL-1Ξ² secretion, while seven are negative regulators of this process. Silencing of SFRS3 increased IL-1Ξ² secretion due to elevation of IL-1Ξ² and caspase-1 mRNA in addition to active caspase-1 levels. This study points to the relevance of splicing in the regulation of auto-inflammatory diseases
    • …
    corecore