62 research outputs found

    Senescence in hepatic stellate cells as a mechanism of liver fibrosis reversal: a putative synergy between retinoic acid and PPAR-gamma signalings

    Get PDF
    Hepatic stellate cells (HSCs), also known as perisinusoidal cells, are pericytes found in the perisinusoidal space of the liver. HSCs are the major cell type involved in liver fibrosis, which is the formation of scar tissue in response to liver damage. When the liver is damaged, stellate cells can shift into an activated state, characterized by proliferation, contractility and chemotaxis. The activated HSCs secrete collagen scar tissue, which can lead to cirrhosis. Recent studies have shown that in vivo activation of HSCs by fibrogenic agents can eventually lead to senescence of these cells, which would contribute to reversal of fibrosis although it may also favor the insurgence of liver cancer. HSCs in their non-active form store huge amounts of retinoic acid derivatives in lipid droplets, which are progressively depleted upon cell activation in injured liver. Retinoic acid is a metabolite of vitamin A (retinol) that mediates the functions of vitamin A, generally required for growth and development. The precise function of retinoic acid and its alterations in HSCs has yet to be elucidated, and nonetheless in various cell types retinoic acid and its receptors (RAR and RXR) are known to act synergistically with peroxisome proliferator-activated receptor gamma (PPAR-gamma) signaling through the activity of transcriptional heterodimers. Here, we review the recent advancements in the understanding of how retinoic acid signaling modulates the fibrogenic potential of HSCs and proposes a synergistic combined action with PPAR-gamma in the reversal of liver fibrosis

    A Guide to Non-Alcoholic Fatty Liver Disease in Childhood and Adolescence

    Get PDF
    Non-Alcoholic Fatty Liver Disease (NAFLD) is now the most prevalent form of chronic liver disease, affecting 10%–20% of the general paediatric population. Within the next 10 years it is expected to become the leading cause of liver pathology, liver failure and indication for liver transplantation in childhood and adolescence in the Western world. While our understanding of the pathophysiological mechanisms underlying this disease remains limited, it is thought to be the hepatic manifestation of more widespread metabolic dysfunction and is strongly associated with a number of metabolic risk factors, including insulin resistance, dyslipidaemia, cardiovascular disease and, most significantly, obesity. Despite this, ”paediatric” NAFLD remains under-studied, under-recognised and, potentially, undermanaged. This article will explore and evaluate our current understanding of NAFLD in childhood and adolescence and how it differs from adult NAFLD, in terms of its epidemiology, pathophysiology, natural history, diagnosis and clinical management. Given the current absence of definitive radiological and histopathological diagnostic tests, maintenance of a high clinical suspicion by all members of the multidisciplinary team in primary and specialist care settings remains the most potent of diagnostic tools, enabling early diagnosis and appropriate therapeutic intervention

    Bariatric surgery as a treatment for metabolic syndrome

    Get PDF
    Obesity is the pandemic of the 21st century. Obesity comorbidities, including hypertension, dyslipidaemia and glucose intolerance define metabolic syndrome, which increases mortality risk and decreases the quality of life. Compared with lifestyles (diet and physical activity) and pharmacological interventions, bariatric surgery is by far the most effective treatment for obesity and its comorbidities. This minimally invasive surgical treatment is based on an increase of satiety (by hormonal regulation and decreasing stomach volume) or a decrease in nutrient retention (gastric and/or intestinal resection). Bariatric surgery has widely demonstrated a beneficial effect on excess body weight loss, cardiovascular risk, dyslipidaemia, non-alcoholic fatty liver disease or glucose homeostasis, among other obesity-related metabolic diseases. This review describes current efforts for the implementation of bariatric surgery in metabolic syndrome, which are mainly focused on the formulation of key definition criteria for targeting the most suitable population for this therapeutic approach. Patients should undergo appropriate nutritional and psychological follow up in order to achieve and maintain weight loss milestones and a healthy metabolic status

    Hepatic fibrogenesis requires sympathetic neurotransmitters

    Get PDF
    Background and aims: Hepatic stellate cells (HSC) are activated by liver injury to become proliferative fibrogenic myofibroblasts. This process may be regulated by the sympathetic nervous system (SNS) but the mechanisms involved are unclear. Methods: We studied cultured HSC and intact mice with liver injury to test the hypothesis that HSC respond to and produce SNS neurotransmitters to promote fibrogenesis. Results: HSC expressed adrenoceptors, catecholamine biosynthetic enzymes, released norepinephrine (NE), and were growth inhibited by α- and β-adrenoceptor antagonists. HSC from dopamine β-hydroxylase deficient (Dbh(−/−)) mice, which cannot make NE, grew poorly in culture and were rescued by NE. Inhibitor studies demonstrated that this effect was mediated via G protein coupled adrenoceptors, mitogen activated kinases, and phosphatidylinositol 3-kinase. Injury related fibrogenic responses were inhibited in Dbh(−/−) mice, as evidenced by reduced hepatic accumulation of α-smooth muscle actin(+ve) HSC and decreased induction of transforming growth factor β1 (TGF-β1) and collagen. Treatment with isoprenaline rescued HSC activation. HSC were also reduced in leptin deficient ob/ob mice which have reduced NE levels and are resistant to hepatic fibrosis. Treating ob/ob mice with NE induced HSC proliferation, upregulated hepatic TGF-β1 and collagen, and increased liver fibrosis. Conclusions: HSC are hepatic neuroglia that produce and respond to SNS neurotransmitters to promote hepatic fibrosis

    Ethnic differences and heterogeneity in genetic and metabolic makeup contributing to nonalcoholic fatty liver disease

    Get PDF
    Obesity is the most prevalent noncommunicable disease in the 21st century, associated with triglyceride deposition in hepatocytes leading to nonalcoholic fatty liver disease (NAFLD). NAFLD is now present in around a third of the world's population. Epidemiological studies have concluded that ethnicity plays a role in complications and treatment response. However, definitive correlations of ethnicity with NAFLD are thoroughly under-reported. A comprehensive review was conducted on ethnic variation in NAFLD patients and its potential role as a crucial effector in complications and treatment response. The highest NAFLD prevalence is observed in Hispanic populations, exhibiting a worse disease progression. In contrast, African-Caribbeans exhibit the lowest risk, with less severe steatosis and inflammation, lower levels of triglycerides, and less metabolic derangement, but conversely higher prevalence of insulin resistance. The prevalence of NAFLD in Asian cohorts is under-reported, although reaching epidemic proportions in these populations. The most well-documented NAFLD patient population is that of Caucasian ethnicity, especially from the US. The relative paucity of available literature suggests there is a vital need for more large-scale multi-ethnic clinical cohort studies to determine the incidence of NAFLD within ethnic groups. This would improve therapy and drug development, as well as help identify candidate gene mutations which may differ within the population based on ethnic background

    Acetylcholine induces fibrogenic effects via M2/M3 ACh receptors in NASH and in primary human hepatic stellate cells

    Get PDF
    BACKGROUND: The parasympathetic nervous system (PNS), via neurotransmitter Acetylcholine (ACh), modulates fibrogenesis in animal models. However, the role of ACh in human hepatic fibrogenesis is unclear. AIMS: We aimed to determine the fibrogenic responses of human hepatic stellate cells (hHSC) to ACh and the relevance of the PNS in hepatic fibrosis in patients with non-alcoholic steatohepatitis (NASH). METHODS: Primary hHSC were analysed for synthesis of endogenous ACh and acetylcholinesterase (AChE), and gene expression of choline acetyltransferase (ChAT) and muscarinic acetylcholine receptors (mAChR). Cell proliferation and fibrogenic markers were analysed in hHSC exposed to ACh, Atropine (Atrop), Mecamylamine (Mec), methoctramine and 4-Diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP). MAChR expression was analysed in human NASH scored for fibrosis. RESULTS: We observed that hHSC synthesise ACh and AChE, and express ChAT and M1-M5 mAChR. We also show that M2 was increased during NASH progression, while both M2 and M3 were found upregulated in activated hHSC. Furthermore, endogenous ACh is required for hHSC basal growth. Exogenous ACh resulted in hHSC hyperproliferation via mAChR and PI-3 K and MEK signalling pathways, as well as increased fibrogenic markers. CONCLUSION: We show that ACh regulates hHSC activation via M2 and M3 mAChR involving the PI-3 K and MEK pathways in vitro. Finally, we provide evidence that the PNS may be involved in human NASH fibrosis

    Early Hypothalamic FTO Overexpression in Response to Maternal Obesity – Potential Contribution to Postweaning Hyperphagia

    Get PDF
    Intrauterine and postnatal overnutrition program hyperphagia, adiposity and glucose intolerance in offspring. Single-nucleotide polymorphisms (SNPs) of the fat mass and obesity associated (FTO) gene have been linked to increased risk of obesity. FTO is highly expressed in hypothalamic regions critical for energy balance and hyperphagic phenotypes were linked with FTO SNPs. As nutrition during fetal development can influence the expression of genes involved in metabolic function, we investigated the impact of maternal obesity on FTO.Female Sprague Dawley rats were exposed to chow or high fat diet (HFD) for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1 (PND1), some litters were adjusted to 3 pups (vs. 12 control) to induce postnatal overnutrition. At PND20, rats were weaned onto chow or HFD for 15 weeks. FTO mRNA expression in the hypothalamus and liver, as well as hepatic markers of lipid metabolism were measured.At weaning, hypothalamic FTO mRNA expression was increased significantly in offspring of obese mothers and FTO was correlated with both visceral and epididymal fat mass (P<0.05); body weight approached significance (P = 0.07). Hepatic FTO and Fatty Acid Synthase mRNA expression were decreased by maternal obesity. At 18 weeks, FTO mRNA expression did not differ between groups; however body weight was significantly correlated with hypothalamic FTO. Postnatal HFD feeding significantly reduced hepatic Carnitine Palmitoyltransferase-1a but did not affect the expression of other hepatic markers investigated. FTO was not affected by chronic HFD feeding.Maternal obesity significantly impacted FTO expression in both hypothalamus and liver at weaning. Early overexpression of hypothalamic FTO correlated with increased adiposity and later food intake of siblings exposed to HFD suggesting upregulation of FTO may contribute to subsequent hyperphagia, in line with some human data. No effect of maternal obesity was observed on FTO in adulthood

    Offspring of Mothers Fed a High Fat Diet Display Hepatic Cell Cycle Inhibition and Associated Changes in Gene Expression and DNA Methylation

    Get PDF
    The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF) nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2) and 27 (P27) from male offspring of control and MHF mothers (n = 8 per group). Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver∶brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction

    Catch-up growth following intra-uterine growth-restriction programmes an insulin-resistant phenotype in adipose tissue.

    Get PDF
    BACKGROUND: It is now widely accepted that the early-life nutritional environment is important in determining susceptibility to metabolic diseases. In particular, intra-uterine growth restriction followed by accelerated postnatal growth is associated with an increased risk of obesity, type-2 diabetes and other features of the metabolic syndrome. The mechanisms underlying these observations are not fully understood. AIM: Using a well-established maternal protein-restriction rodent model, our aim was to determine if exposure to mismatched nutrition in early-life programmes adipose tissue structure and function, and expression of key components of the insulin-signalling pathway. METHODS: Offspring of dams fed a low-protein (8%) diet during pregnancy were suckled by control (20%)-fed dams to drive catch-up growth. This 'recuperated' group was compared with offspring of dams fed a 20% protein diet during pregnancy and lactation (control group). Epididymal adipose tissue from 22-day and 3-month-old control and recuperated male rats was studied using histological analysis. Expression and phosphorylation of insulin-signalling proteins and gene expression were assessed by western blotting and reverse-transcriptase PCR, respectively. RESULTS: Recuperated offspring at both ages had larger adipocytes (P<0.001). Fasting serum glucose, insulin and leptin levels were comparable between groups but increased with age. Recuperated offspring had reduced expression of IRS-1 (P<0.01) and PI3K p110β (P<0.001) in adipose tissue. In adult recuperated rats, Akt phosphorylation (P<0.01) and protein levels of Akt-2 (P<0.01) were also reduced. Messenger RNA expression levels of these proteins were not different, indicating a post-transcriptional effect. CONCLUSION: Early-life nutrition programmes alterations in adipocyte cell size and impairs the protein expression of several insulin-signalling proteins through post-transcriptional mechanisms. These indices may represent early markers of insulin resistance and metabolic disease risk
    corecore