18 research outputs found

    Transmission Of Polarization Quantum State Through A Fiber Optic Channel By Swapped Time-Bin State

    No full text
    The time-bin quantum state is known to be highly robust against decoherence effects in both fiber-optic and atmospheric channels, a unique feature that renders the time degree of freedom (DOF) more appropriate for quantum communication in these channels. In this paper, we present a scheme to deliver with high fidelity an arbitrary, unknown quantum state in polarization or spatial DOFs over a stochastic channel without need for compensation. The sender swaps the polarization or spatial quantum state for a time-bin state of the photon before signaling it over the random channel, and the receiver swaps the state back. Because the signaled photon is assumed to be in a single spatial or polarization mode, no modal-dependent channel effects perturb the time-bin state. We find that by migration to the time bin, the fidelity of the transferred state is boosted by a margin dependent on the time-bin period and the standard deviations of the statistical parameters of the channel

    Hyperentangled Photons Generation Using Crossed Quasi-Phase-Matched Superlattice

    No full text
    A superlattice structure featuring nonlinear layers with alternating orthogonal optic axes interleaved with orthogonal-poling directions, is shown to generate high-quality hyperentangled photons via orthogonal quasi-phase matching that corrects for phase- and group-velocity mismatching concurrently

    Relative-Phase And Time-Delay Maps All Over The Emission Cone Of Hyperentangled Photon Source

    No full text
    Realizing high flux of hyperentangled photons requires collecting photon pairs simultaneously entangled in multiple degrees of freedom over relatively wide spectral and angular emission ranges. We consider the hyperentangled photons produced by superimposing noncollinear spontaneous parametric down conversion (SPDC) emissions of two crossed and coherently pumped nonlinear crystals. We present an approach for determining the directional-spectral relative-phase and time-delay maps of hyperentangled photons all over the SPDC emission cone. A vectorial representation is adopted for all parameters of concern. This enables us to examine unconventional arrangements such as the autocompensation of relative-phase and time-delay via oblique pump incidence. While prior works often adopt first-order approximation, it is shown that the actual directional relative-phase map is very well approximated by a quadratic function of the polar angle of the two-photon emission while negligibly varying with the azimuthal angle

    Hyperentangled Photons Generation Using Crossed Quasi-Phase-Matched Superlattice

    No full text
    A superlattice structure featuring nonlinear layers with alternating orthogonal optic axes interleaved with orthogonal-poling directions, is shown to generate high-quality hyperentangled photons via orthogonal quasi-phase matching that corrects for phase- and group-velocity mismatching concurrently

    Orthogonal Quasi-Phase-Matched Superlattice For Generation Of Hyperentangled Photons

    No full text
    A crystal superlattice structure featuring nonlinear layers with alternating orthogonal optic axes interleaved with orthogonal poling directions, is shown to generate high-quality hyperentangled photon pairs via orthogonal quasi-phase-matched spontaneous parametric downconversion. We demonstrate that orthogonal quasi-phase matching (QPM) processes in a single nonlinear domain structure correct phase and group-velocity mismatches concurrently. Compared with the conventional two-orthogonal-crystals source and the double-nonlinearity single-crystal source, the orthogonal QPM superlattice is shown to suppress the spatial and temporal distinguishability of the generated photon pairs by several orders of magnitude, depending on the number of layers. This enhanced all-over-the-cone indistinguishability enables the generation of higher fluxes of photon-pairs by means of the combined use of (a) long nonlinear crystal in noncollinear geometry, (b) low coherence-time pumping and ultra-wide-band spectral detection, and (c) focused pumping and over-the-cone detection. While each of these three features is challenging by itself, it is remarkable that the orthogonal QPM superlattice meets all of these challenges without the need for separate spatial or temporal compensation

    Velocity Matching of a GaAs Electrooptic Modulator

    No full text
    New designs for the velocity matching of a deep-etched semiconductor electro-optic modulator are presented. A tantalum pentoxide (Ta2O5) coating is considered here for achieving velocity matching between the microwave and the optical signals. The effects of the velocity mismatch, the conductor loss, the dielectric loss, and the impedance mismatch are studied in relation to the optical bandwidth of a high-speed semiconductor modulator. It is shown that both the dielectric loss and the impedance matching play key roles for velocity-matched high-speed modulators with low conductor loss. The effects of Ta2O5 thickness on the overall bandwidth and on the half-wave voltage-length product VpiL are also reported
    corecore