4 research outputs found

    Geological and Geochemical Prospecting for Gold Mineralization in Bode-Saadu Axis, Southwestern Nigeria

    Get PDF
    Geological and geochemical studies of gold mineralization in Bode-Saadu axis, Southwestern Basement Complex, Nigeria have been conducted in order to study their mode of occurrence, structural settings, pattern of distribution and potential. Geological studies reveal that granite and gneiss granite are the prominent rocks in the area and exist in the north-eastern, north-western and southwestern part of the area whereas mica and amphibole schist occur as low-lying exposure. Petrographic studies reveal spatial association between gold mineralization and the fractured zones. Geochemical studies show that the gold concentration in rocks and stream sediments from the region is low with the exception of a few areas with high values and is related to the occurrence of fissure in the northeast-west direction. The distribution pattern of gold in the region is skewed NE-SW, indicating that gold mineralization is structurally controlled

    Profiles of Problematic Soils and Spatial Distribution: Implication on Foundation Construction in Parts of Kosofe Lagos, Southwestern Nigeria.

    Get PDF
    Geotechnical data were complemented with geophysical investigation and employed to delineate problematic soils in parts of Kosofe Lagos, Southwestern Nigeria. The study area was chosen because of known issues regarding cracks in buildings and differential settlement of infrastructures founded on soils in the area. The aim is to generate profiles and maps of the spatial distribution of the subsurface soils to aid in foundation planning. Forty eight borehole logs and nine Vertical Electrical Soundings were compiled to delineate the different subsurface lithology which include peat, clay and sand. The results showed that the peat layer has maximum thickness of about 18.25 m but absent in some boreholes. This is underlain by clay unit with thickness ranging between 2.50-28.50 m. Sand unit constitute the third layer delineated with maximum thickness of 14 m. There is a general thickening of peat soils in the northern parts, especially around the streams in the area, which is instructive on the role of stream in the formation of the peat. The clay on the other hand is thickest around the northeastern and southeastern parts. The soil profiles generated reveal that the area is underlain by thick peat and clay having significant lateral, vertical variation and rapidly changing lithological facie over short distances. The extensive occurrence of these poor engineering soils calls for adequate engineering precaution in designs of building foundation

    Geophysical Investigation as an Aid to Understanding Complex Geological Terrain: A Case of Yikpata Transition Zone in Share, North-Central Nigeria

    Get PDF
    A geophysical method of investigation has been deployed in order to give a quick overview of the nature and the rapidly changing subsurface lithologies that characterized Yikpata, Share, Kwara State, Nigeria. A total of nine (9) vertical electrical soundings (VES), using Schlumberger Array uniformly divided into three groups: basement, basement/sedimentary boundary and sedimentary terrain, and horizontal profiling (HP) using Wenner Array were deployed for this study. The study revealed variation in the subsurface resistivity, thus depicting changes in lithology/rock types along this basement-sedimentary contact zone. The interpretation revealed that the Basement Complex terrain consists of 3-4 geoelectric layers: the topsoil, the weathered, weathered/fractured basement and the fractured basement. Depths beyond ≥ 12 m where the fractured basement occurs can be target for groundwater exploration and structurally controlled mineralization. The resistivity values around the Basement/Sedimentary unconformity zone shows about 3 – 4 geoelectric layers. The resistivity values show remarkable characteristics of the basement and the sedimentary terrains and also reflect the rapidly changing subsurface geology in the area. In the sedimentary terrain, 4 geoelectric layers were delineated: Topsoil, clayey sand, sandy clay and clay. Geoelectric sections reveal the variation in the subsurface lithology laterally and vertically. The study has shown that the resistivity method can be an aid to understand complex geologic environments with rapidly changing subsurface geology. Also, the knowledge of the geology of an area is very important in order to make sensible geophysical interpretation

    Evaluation of aquifer hydraulic characteristics using geoelectrical sounding, pumping and laboratory tests: A case study of Lokoja and Patti Formations, Southern Bida Basin, Nigeria

    No full text
    The hydraulic characteristics of aquifers in Lokoja and Patti Formations were investigated using combination of vertical electrical sounding (VES), pumping and laboratory tests. A total of 20 VES (10 each in areas underlain by Lokoja and Patti Formations) were carried out at different locations with 5 pumping tests around VES stations in order to determine the geoelectric layers, thickness, depths to water table and groundwater potential of the area. 21 samples extracted fromaquiferous units of surface outcrops were also subjected to laboratory constant head and falling head permeameter tests in order to determine hydraulic conductivity (K) values using the Darcy’s law of liquid flow. The results of VES for areas underlain by Lokoja and Patti Formations revealed 4-5 geo-electrical layers. The depths to water table vary from 5.91-40.8 m. Thickness values are within the range of 7.37-27.3 m for aquiferous units of Lokoja Formation, and 10.8-20.1 m for the Patti Formation. The results of aquifer characteristics using Dar-Zarrouk Parameter gave hydraulic conductivity (K) values between 1.92-91.7 m/day and 2.15-31.8 m/day for aquifers of Lokoja and Patti Formations respectively. Transmissivity (T) values of the aquiferous units of Lokoja Formation fall within 24.97-2117 m2/day, while those of Patti Formation vary from 27.9-456.91 m2/day. There is a strong correlation between the values of measured and calculated hydraulic conductivity and transmissivity between measured and calculated transmissivity for the five wells (R2 = 0.99 and 0.92, respectively). Based on the results obtained and interpretations proffered, aquiferous units in both formations are capable of yielding optimum groundwater for private consumption and partly to small communities, and to some extent can supply water for great regional use. It is suggested that similar study should be carried out in other sedimentary basins where to aid regional planning and management of groundwater resource
    corecore