7 research outputs found

    Trypanosoma cruzi expresses a plant-like ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum

    No full text
    In most aerobic organisms hemoperoxidases play a major role in H(2)O(2)-detoxification, but trypanosomatids have been reported to lack this activity. Here we describe the properties of an ascorbate-dependent hemoperoxidase (TcAPX) from the American trypanosome Trypanosoma cruzi. The activity of this plant-like enzyme can be linked to the reduction of the parasite-specific thiol trypanothione by ascorbate in a process that involves nonenzymatic interaction. The role of heme in peroxidase activity was demonstrated by spectral and inhibition studies. Ascorbate could saturate TcAPX activity indicating that the enzyme obeys Michaelis–Menten kinetics. Parasites that overexpressed TcAPX activity were found to have increased resistance to exogenous H(2)O(2). To determine subcellular location an epitope-tagged form of TcAPX was expressed in T. cruzi, which was observed to colocalize with endoplasmic reticulum resident chaperone protein BiP. These findings identify an arm of the oxidative defense system of this medically important parasite. The absence of this redox pathway in the human host may be therapeutically exploitable

    Pathogenesis of Chagas' Disease: Parasite Persistence and Autoimmunity

    No full text
    Summary: Acute Trypanosoma cruzi infections can be asymptomatic, but chronically infected individuals can die of Chagas' disease. The transfer of the parasite mitochondrial kinetoplast DNA (kDNA) minicircle to the genome of chagasic patients can explain the pathogenesis of the disease; in cases of Chagas' disease with evident cardiomyopathy, the kDNA minicircles integrate mainly into retrotransposons at several chromosomes, but the minicircles are also detected in coding regions of genes that regulate cell growth, differentiation, and immune responses. An accurate evaluation of the role played by the genotype alterations in the autoimmune rejection of self-tissues in Chagas' disease is achieved with the cross-kingdom chicken model system, which is refractory to T. cruzi infections. The inoculation of T. cruzi into embryonated eggs prior to incubation generates parasite-free chicks, which retain the kDNA minicircle sequence mainly in the macrochromosome coding genes. Crossbreeding transfers the kDNA mutations to the chicken progeny. The kDNA-mutated chickens develop severe cardiomyopathy in adult life and die of heart failure. The phenotyping of the lesions revealed that cytotoxic CD45, CD8+ γδ, and CD8α+ T lymphocytes carry out the rejection of the chicken heart. These results suggest that the inflammatory cardiomyopathy of Chagas' disease is a genetically driven autoimmune disease

    The nuclear pore complex: understanding its function through structural insight

    No full text

    Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence

    No full text
    corecore