5,378 research outputs found

    The Application of Airtraq (fibreoptic intubation device) to Otolaryngology

    Get PDF
    The anaesthetic laryngoscope Airtraq is designed for the difficult airway. This disposable laryngoscope requires minimal cervical manipulation and unlike other common anaesthetic larynmgoscopes contains a channel for the guidance of an endotracheal tube. This could also be used for diagnosis and biopsy under a general anaesthetic or potentially under a local anaesthetic in an outpatient setting for biopsies or the removal of hypopharyngeal foreign bodies via flexible biopsy forceps obviating the need for a general anaesthetic. Thus Airtraq could be included in the armoury of pre-existing direct laryngoscopes because of its virtue of minimal airway manipulation

    Joint Structure Learning of Multiple Non-Exchangeable Networks

    Full text link
    Several methods have recently been developed for joint structure learning of multiple (related) graphical models or networks. These methods treat individual networks as exchangeable, such that each pair of networks are equally encouraged to have similar structures. However, in many practical applications, exchangeability in this sense may not hold, as some pairs of networks may be more closely related than others, for example due to group and sub-group structure in the data. Here we present a novel Bayesian formulation that generalises joint structure learning beyond the exchangeable case. In addition to a general framework for joint learning, we (i) provide a novel default prior over the joint structure space that requires no user input; (ii) allow for latent networks; (iii) give an efficient, exact algorithm for the case of time series data and dynamic Bayesian networks. We present empirical results on non-exchangeable populations, including a real data example from biology, where cell-line-specific networks are related according to genomic features.Comment: To appear in Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS

    Sequential pattern formation governed by signaling gradients

    Full text link
    Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.Comment: 12 pages, 5 figure
    • …
    corecore