14 research outputs found

    First Report of an Invasive Infection by <i>Cephalotrichum gorgonifer</i> in a Neutropenic Patient with Hematological Malignancy under Chemotherapy

    No full text
    The etiological agents of infrequent invasive fungal infections (IFI) are difficult to identify on the species level using classic morphological examination. We describe the first case of an IFI caused by Cephalotrichum gorgonifer in a neutropenic patient with a hematological malignancy and put it on the map as a new causative agent of IFI. Case report, microbiological findings and description of the etiological agent. A 60-year-old man was diagnosed with mantle cell lymphoma. A CT scan confirmed the presence of lung infiltrates located at the right upper lobe. Histological examination of one of the nodules showed a large number of narrow septate hyphae with acute-angle branching and irregular round cell morphology; vessels walls appeared infiltrated, proving an angioinvasive pulmonary IFI. Sample culture resulted positive and molecular identification proved the presence of Cephalotrichum gorgonifer. Voriconazole was used for 12 months and the patient did not report any complications or side effects. Complete remission of lymphoma was achieved later by the time chemotherapy, radiotherapy, and radioimmunotherapy consolidation were completed. We recommend the inclusion of Cephalotrichum gorgonifer in the list of opportunistic pathogens causing mycoses in neutropenic hematological patients with suspected mould-related IFI

    Short Tandem Repeats (STRs) as Biomarkers for the Quantitative Follow-Up of Chimerism after Stem Cell Transplantation: Methodological Considerations and Clinical Application

    No full text
    Chimerism refers to the relative proportion of donor and recipient DNA after hematopoietic stem cell transplantation (HSCT) and its quantitative follow-up is of great clinical utility in this setting. PCR of short tandem repeats (STR-PCR) constitutes the gold standard method for chimerism quantification, although more sensitive PCR techniques (such as qPCR) have recently arisen. We compared the sensitivity and the quantification capacity of both techniques in patient samples and artificial mixtures and demonstrated adequate performance of both methods, with higher sensitivity of qPCR and better quantification skills of STR-PCR. By qPCR, we then prospectively followed up 57 patients that were in complete chimerism (CC) by STR-PCR. Twenty-seven patients (59%) showed 0.1&ndash;1% recipient DNA in the bone marrow. Only 4 patients presented 0.1&ndash;1% recipient DNA in peripheral blood (PB), and one of them relapsed. Finally, by qPCR, we retrospectively studied the last sample that showed CC by STR-PCR prior to relapse in 8 relapsed patients. At a median of 59 days prior to relapse, six patients presented mixed chimerism by qPCR in PB. Since both approaches have complementary characteristics, we conclude that different techniques should be applied in different clinical settings and therefore propose a methodological algorithm for chimerism follow-up after HSCT

    Novel Candidate loci and Pathogenic Germline Variants Involved in Familial Hematological Malignancies Revealed by Whole-Exome Sequencing

    No full text
    The familial occurrence of hematological malignancies has been underappreciated. Recent studies suggest that up to 15% of adults with myeloid neoplasms carry germline pathogenic variants in cancer-predisposing genes. This study aimed to identify the underlying germline predisposition variant in patients with a strong family or personal onco-hematological history using whole exome sequencing on sixteen uncharacterized individuals. It was carried out in two groups of patients, one with samples available from two affected relatives (Cohort A) and one with available samples from the index case (Cohort B). In Cohort A, six families were characterized. Two families shared variants in genes associated with DNA damage response and involved in cancer development (CHEK2 and RAD54L). Pathogenic or likely pathogenic germline variants were also found in novel candidate genes (NFATC2 and TC2N). In two families, any relevant pathogenic or likely pathogenic genomic variants were identified. In Cohort B, four additional index cases were analyzed. Three of them harbor clinically relevant variants in genes with a probable role in the development of inherited forms of hematological malignancies (GATA1, MSH4 and PRF1). Overall, whole exome sequencing is a useful approach to achieve a further characterization of these patients and their mutational spectra. Moreover, further investigations may help improve optimization for disease management of affected patients and their families

    Novel Candidate <i>loci</i> and Pathogenic Germline Variants Involved in Familial Hematological Malignancies Revealed by Whole-Exome Sequencing

    No full text
    The familial occurrence of hematological malignancies has been underappreciated. Recent studies suggest that up to 15% of adults with myeloid neoplasms carry germline pathogenic variants in cancer-predisposing genes. This study aimed to identify the underlying germline predisposition variant in patients with a strong family or personal onco-hematological history using whole exome sequencing on sixteen uncharacterized individuals. It was carried out in two groups of patients, one with samples available from two affected relatives (Cohort A) and one with available samples from the index case (Cohort B). In Cohort A, six families were characterized. Two families shared variants in genes associated with DNA damage response and involved in cancer development (CHEK2 and RAD54L). Pathogenic or likely pathogenic germline variants were also found in novel candidate genes (NFATC2 and TC2N). In two families, any relevant pathogenic or likely pathogenic genomic variants were identified. In Cohort B, four additional index cases were analyzed. Three of them harbor clinically relevant variants in genes with a probable role in the development of inherited forms of hematological malignancies (GATA1, MSH4 and PRF1). Overall, whole exome sequencing is a useful approach to achieve a further characterization of these patients and their mutational spectra. Moreover, further investigations may help improve optimization for disease management of affected patients and their families

    DataSheet_1_Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation.pdf

    No full text
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for patients with hematologic malignances. Haploidentical HSCT (Haplo-HSCT) is an alternative option for patients who do not have an HLA-matched donor. The use of post-transplantation high dose cyclophosphamide (PT-Cy) is commonly employed for graft-versus-host disease (GVHD) prophylaxis in haplo-HSCT. Cyclophosphamide (Cy) is an alkylating agent with antineoplastic and immunosuppressive activity, whose bioactivation requires the activity of polymorphic enzymes in the liver to produce phosphoramide mustard, which is a DNA alkylating agent. To identify polymorphisms in the genes of Cy metabolism and correlate them with post-HSCT complications [GVHD, sinusoidal obstruction syndrome (SOS), hemorrhagic cystitis (HC) and transplant-related mortality (TRM)], we designed a custom next-generation sequencing panel with Cy metabolism enzymes. We analyzed 182 patients treated with haplo-HSCT with PT-Cy from 2007 to 2019, detecting 40 variants in 11 Cy metabolism genes. Polymorphisms in CYP2B6, a major enzyme involved in Cy activation, were associated with decreased activity of this enzyme and a higher risk of Graf-versus-host disease (GVHD). Variants in other activation enzymes (CYP2A6, CYP2C8, CYP2C9, CYP2C19) lead to decreased enzyme activity and were associated with GVHD. Polymorphisms in detoxification genes such as glutathione S-transferases decreased the ability to detoxify cyclophosphamide metabolites due to lower enzyme activity, which leads to increased amounts of toxic metabolites and the development of III-IV acute GVHD. GSMT1*0 a single nucleotide polymorphism previously recognized as a risk factor for SOS was associated with a higher risk of SOS. We conclude that polymorphisms of genes involved in the metabolism of cyclophosphamide in our series are associated with severe grades of GVHD and toxicities (SOS and TRM) after haplo-HSCT and could be used to improve the clinical management of transplanted patients.</p

    Table_1_Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation.xlsx

    No full text
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for patients with hematologic malignances. Haploidentical HSCT (Haplo-HSCT) is an alternative option for patients who do not have an HLA-matched donor. The use of post-transplantation high dose cyclophosphamide (PT-Cy) is commonly employed for graft-versus-host disease (GVHD) prophylaxis in haplo-HSCT. Cyclophosphamide (Cy) is an alkylating agent with antineoplastic and immunosuppressive activity, whose bioactivation requires the activity of polymorphic enzymes in the liver to produce phosphoramide mustard, which is a DNA alkylating agent. To identify polymorphisms in the genes of Cy metabolism and correlate them with post-HSCT complications [GVHD, sinusoidal obstruction syndrome (SOS), hemorrhagic cystitis (HC) and transplant-related mortality (TRM)], we designed a custom next-generation sequencing panel with Cy metabolism enzymes. We analyzed 182 patients treated with haplo-HSCT with PT-Cy from 2007 to 2019, detecting 40 variants in 11 Cy metabolism genes. Polymorphisms in CYP2B6, a major enzyme involved in Cy activation, were associated with decreased activity of this enzyme and a higher risk of Graf-versus-host disease (GVHD). Variants in other activation enzymes (CYP2A6, CYP2C8, CYP2C9, CYP2C19) lead to decreased enzyme activity and were associated with GVHD. Polymorphisms in detoxification genes such as glutathione S-transferases decreased the ability to detoxify cyclophosphamide metabolites due to lower enzyme activity, which leads to increased amounts of toxic metabolites and the development of III-IV acute GVHD. GSMT1*0 a single nucleotide polymorphism previously recognized as a risk factor for SOS was associated with a higher risk of SOS. We conclude that polymorphisms of genes involved in the metabolism of cyclophosphamide in our series are associated with severe grades of GVHD and toxicities (SOS and TRM) after haplo-HSCT and could be used to improve the clinical management of transplanted patients.</p

    DataSheet_2_Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation.pdf

    No full text
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for patients with hematologic malignances. Haploidentical HSCT (Haplo-HSCT) is an alternative option for patients who do not have an HLA-matched donor. The use of post-transplantation high dose cyclophosphamide (PT-Cy) is commonly employed for graft-versus-host disease (GVHD) prophylaxis in haplo-HSCT. Cyclophosphamide (Cy) is an alkylating agent with antineoplastic and immunosuppressive activity, whose bioactivation requires the activity of polymorphic enzymes in the liver to produce phosphoramide mustard, which is a DNA alkylating agent. To identify polymorphisms in the genes of Cy metabolism and correlate them with post-HSCT complications [GVHD, sinusoidal obstruction syndrome (SOS), hemorrhagic cystitis (HC) and transplant-related mortality (TRM)], we designed a custom next-generation sequencing panel with Cy metabolism enzymes. We analyzed 182 patients treated with haplo-HSCT with PT-Cy from 2007 to 2019, detecting 40 variants in 11 Cy metabolism genes. Polymorphisms in CYP2B6, a major enzyme involved in Cy activation, were associated with decreased activity of this enzyme and a higher risk of Graf-versus-host disease (GVHD). Variants in other activation enzymes (CYP2A6, CYP2C8, CYP2C9, CYP2C19) lead to decreased enzyme activity and were associated with GVHD. Polymorphisms in detoxification genes such as glutathione S-transferases decreased the ability to detoxify cyclophosphamide metabolites due to lower enzyme activity, which leads to increased amounts of toxic metabolites and the development of III-IV acute GVHD. GSMT1*0 a single nucleotide polymorphism previously recognized as a risk factor for SOS was associated with a higher risk of SOS. We conclude that polymorphisms of genes involved in the metabolism of cyclophosphamide in our series are associated with severe grades of GVHD and toxicities (SOS and TRM) after haplo-HSCT and could be used to improve the clinical management of transplanted patients.</p

    DataSheet_4_Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation.pdf

    No full text
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for patients with hematologic malignances. Haploidentical HSCT (Haplo-HSCT) is an alternative option for patients who do not have an HLA-matched donor. The use of post-transplantation high dose cyclophosphamide (PT-Cy) is commonly employed for graft-versus-host disease (GVHD) prophylaxis in haplo-HSCT. Cyclophosphamide (Cy) is an alkylating agent with antineoplastic and immunosuppressive activity, whose bioactivation requires the activity of polymorphic enzymes in the liver to produce phosphoramide mustard, which is a DNA alkylating agent. To identify polymorphisms in the genes of Cy metabolism and correlate them with post-HSCT complications [GVHD, sinusoidal obstruction syndrome (SOS), hemorrhagic cystitis (HC) and transplant-related mortality (TRM)], we designed a custom next-generation sequencing panel with Cy metabolism enzymes. We analyzed 182 patients treated with haplo-HSCT with PT-Cy from 2007 to 2019, detecting 40 variants in 11 Cy metabolism genes. Polymorphisms in CYP2B6, a major enzyme involved in Cy activation, were associated with decreased activity of this enzyme and a higher risk of Graf-versus-host disease (GVHD). Variants in other activation enzymes (CYP2A6, CYP2C8, CYP2C9, CYP2C19) lead to decreased enzyme activity and were associated with GVHD. Polymorphisms in detoxification genes such as glutathione S-transferases decreased the ability to detoxify cyclophosphamide metabolites due to lower enzyme activity, which leads to increased amounts of toxic metabolites and the development of III-IV acute GVHD. GSMT1*0 a single nucleotide polymorphism previously recognized as a risk factor for SOS was associated with a higher risk of SOS. We conclude that polymorphisms of genes involved in the metabolism of cyclophosphamide in our series are associated with severe grades of GVHD and toxicities (SOS and TRM) after haplo-HSCT and could be used to improve the clinical management of transplanted patients.</p

    DataSheet_3_Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation.pdf

    No full text
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for patients with hematologic malignances. Haploidentical HSCT (Haplo-HSCT) is an alternative option for patients who do not have an HLA-matched donor. The use of post-transplantation high dose cyclophosphamide (PT-Cy) is commonly employed for graft-versus-host disease (GVHD) prophylaxis in haplo-HSCT. Cyclophosphamide (Cy) is an alkylating agent with antineoplastic and immunosuppressive activity, whose bioactivation requires the activity of polymorphic enzymes in the liver to produce phosphoramide mustard, which is a DNA alkylating agent. To identify polymorphisms in the genes of Cy metabolism and correlate them with post-HSCT complications [GVHD, sinusoidal obstruction syndrome (SOS), hemorrhagic cystitis (HC) and transplant-related mortality (TRM)], we designed a custom next-generation sequencing panel with Cy metabolism enzymes. We analyzed 182 patients treated with haplo-HSCT with PT-Cy from 2007 to 2019, detecting 40 variants in 11 Cy metabolism genes. Polymorphisms in CYP2B6, a major enzyme involved in Cy activation, were associated with decreased activity of this enzyme and a higher risk of Graf-versus-host disease (GVHD). Variants in other activation enzymes (CYP2A6, CYP2C8, CYP2C9, CYP2C19) lead to decreased enzyme activity and were associated with GVHD. Polymorphisms in detoxification genes such as glutathione S-transferases decreased the ability to detoxify cyclophosphamide metabolites due to lower enzyme activity, which leads to increased amounts of toxic metabolites and the development of III-IV acute GVHD. GSMT1*0 a single nucleotide polymorphism previously recognized as a risk factor for SOS was associated with a higher risk of SOS. We conclude that polymorphisms of genes involved in the metabolism of cyclophosphamide in our series are associated with severe grades of GVHD and toxicities (SOS and TRM) after haplo-HSCT and could be used to improve the clinical management of transplanted patients.</p
    corecore