5 research outputs found
The role of optic nerve sheath diameter ultrasound in brain infection
Brain infections cause significant morbidity and mortality worldwide, especially in resource-limited settings with high HIV co-infection rates. Raised intracranial pressure [ICP] may complicate brain infection and worsen neurological injury, yet invasive ICP monitoring is often unavailable. Optic nerve sheath diameter [ONSD] ultrasound may allow detection of raised ICP at the bedside; however, pathology in brain infection is different to traumatic brain injury, in which most studies have been performed. The use of ONSD ultrasound has been described in tuberculous meningitis, cryptococcal meningitis and cerebral malaria; however correlation with invasive ICP measurement has not been performed. Normal optic nerve sheath values are not yet established for most populations, and thresholds for clinical intervention cannot be assumed to match those used in non-infective brain pathology. ONSD ultrasound may be suitable for use in resource-limited settings by clinicians with limited ultrasound training. Standardisation of scanning technique, consensus on normal ONSD values, and action on abnormal results, are areas for future research. This scoping review examines the role of ONSD ultrasound in brain infection. We discuss pathophysiology, and describe the rationale, practicalities, and challenges of utilising ONSD ultrasound for brain infection monitoring and management. We discuss the existing evidence base for this technique, and identify knowledge gaps and future research priorities
Optic nerve sheath ultrasound for the detection and monitoring of raised intracranial pressure in tuberculous meningitis
Background:
Neurological complications of tuberculous meningitis (TBM) often lead to raised intracranial pressure (ICP) resulting in high morbidity and mortality. Measurement of optic nerve sheath diameter (ONSD) by point-of-care ultrasound may aid in the identification and management of raised ICP in TBM.
Methods:
From June 2017 to December 2019, 107 Vietnamese adults with TBM, enrolled in the ACT HIV or LAST ACT trials (NCT03092817; NCT03100786), underwent ONSD ultrasound at one or more of days 0,3,7,14,21 +/-30 after enrolment. Demographic data, TBM severity grade, HIV co-infection status, and clinical endpoints by 3 months were recorded. ONSD values were correlated with disease severity, baseline brain magnetic resonance imaging or computed tomography imaging, cerebrospinal fluid parameters and clinical endpoints.
Results:
267 ONSD ultrasound scans were performed in 107 participants over the first 30 days of treatment, with measurements from 0.38-0.74cm. Paired baseline ONSD and brain imaging were performed in 63 participants. Higher baseline ONSD was associated with more severe disease and abnormal brain imaging (abnormal imaging 0.55cm vs 0.50cm normal imaging, p=0.01). Baseline median ONSD was significantly higher in participants who died by 3 months (0.56cm [15/72]) vs. participants who survived by 3 months (0.52cm [57/72]), p=0.02. Median ONSD was higher at all follow up time points in participants who died by 3 months.
Conclusions:
Higher ONSD was associated with increased disease severity, brain imaging abnormalities, and increased death by 3 months. ONSD ultrasound has a potential role as a non-invasive and affordable bedside tool for predicting brain pathology and death in TBM.</p
Cardio-haemodynamic assessment and venous lactate in severe dengue: Relationship with recurrent shock and respiratory distress
BACKGROUND: Dengue can cause plasma leakage that may lead to dengue shock syndrome (DSS). In approximately 30% of DSS cases, recurrent episodes of shock occur. These patients have a higher risk of fluid overload, respiratory distress and poor outcomes. We investigated the association of echocardiographically-derived cardiac function and intravascular volume parameters plus lactate levels, with the outcomes of recurrent shock and respiratory distress in severe dengue. METHODS/PRINCIPLE FINDINGS: We performed a prospective observational study in Paediatric and adult ICU, at the Hospital for Tropical Diseases (HTD), Ho Chi Minh City, Vietnam. Patients with dengue were enrolled within 12 hours of admission to paediatric or adult ICU. A haemodynamic assessment and portable echocardiograms were carried out daily for 5 days from enrolment and all interventions recorded. 102 patients were enrolled; 22 patients did not develop DSS, 48 had a single episode of shock and 32 had recurrent shock. Patients with recurrent shock had a higher enrolment pulse than those with 1 episode or no shock (median: 114 vs. 100 vs. 100 b/min, P = 0.002), significantly lower Stroke Volume Index (SVI), (median: 21.6 vs. 22.8 vs. 26.8mls/m2, P<0.001) and higher lactate levels (4.2 vs. 2.9 vs. 2.2 mmol/l, P = 0.001). Higher SVI and worse left ventricular function (higher Left Myocardial Performance Index) on study days 3-5 was associated with the secondary endpoint of respiratory distress. There was an association between the total IV fluid administered during the ICU admission and respiratory distress (OR: 1.03, 95% CI 1.01-1.06, P = 0.001). Admission lactate levels predicted patients who subsequently developed recurrent shock (P = 0.004), and correlated positively with the total IV fluid volume received (rho: 0.323, P = 0.001) and also with admission ALT (rho: 0.764, P<0.001) and AST (rho: 0.773, P<0.001). CONCLUSIONS/SIGNIFICANCE: Echo-derived intravascular volume assessment and venous lactate levels can help identify dengue patients at high risk of recurrent shock and respiratory distress in ICU. These findings may serve to, not only assist in the management of DSS patients, but also these haemodynamic endpoints could be used in future dengue fluid intervention trials
Cerebrospinal fluid MinION sequencing of 16S rRNA gene for rapid and accurate diagnosis of bacterial meningitis
Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on cross-species receptor usage of a novel coronavirus 2019-nCo
Human versus equine intramuscular antitoxin, with or without human intrathecal antitoxin, for the treatment of adults with tetanus: a 2 × 2 factorial randomised controlled trial
Background
Intramuscular antitoxin is recommended in tetanus treatment, but there are few data comparing human and equine preparations. Tetanus toxin acts within the CNS, where there is limited penetration of peripherally administered antitoxin; thus, intrathecal antitoxin administration might improve clinical outcomes compared with intramuscular injection.
Methods
In a 2  × 2 factorial trial, all patients aged 16 years or older with a clinical diagnosis of generalised tetanus admitted to the intensive care unit of the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam, were eligible for study entry. Participants were randomly assigned first to 3000 IU human or 21 000 U equine intramuscular antitoxin, then to either 500 IU intrathecal human antitoxin or sham procedure. Interventions were delivered by independent clinicians, with attending clinicians and study staff masked to treatment allocations. The primary outcome was requirement for mechanical ventilation. The analysis was done in the intention-to-treat population. The study is registered at ClinicalTrials.gov, NCT02999815; recruitment is completed.
Findings
272 adults were randomly assigned to interventions between Jan 8, 2017, and Sept 29, 2019, and followed up until May, 2020. In the intrathecal allocation, 136 individuals were randomly assigned to sham procedure and 136 to antitoxin; in the intramuscular allocation, 109 individuals were randomly assigned to equine antitoxin and 109 to human antitoxin. 54 patients received antitoxin at a previous hospital, excluding them from the intramuscular antitoxin groups. Mechanical ventilation was given to 56 (43%) of 130 patients allocated to intrathecal antitoxin and 65 (50%) of 131 allocated to sham procedure (relative risk [RR] 0·87, 95% CI 0·66–1·13; p=0·29). For the intramuscular allocation, 48 (45%) of 107 patients allocated to human antitoxin received mechanical ventilation compared with 48 (44%) of 108 patients allocated to equine antitoxin (RR 1·01, 95% CI 0·75–1·36, p=0·95). No clinically relevant difference in adverse events was reported. 22 (16%) of 136 individuals allocated to the intrathecal group and 22 (11%) of 136 allocated to the sham procedure experienced adverse events related or possibly related to the intervention. 16 (15%) of 108 individuals allocated to equine intramuscular antitoxin and 17 (16%) of 109 allocated to human antitoxin experienced adverse events related or possibly related to the intervention. There were no intervention-related deaths.
Interpretation
We found no advantage of intramuscular human antitoxin over intramuscular equine antitoxin in tetanus treatment. Intrathecal antitoxin administration was safe, but did not provide overall benefit in addition to intramuscular antitoxin administration