35 research outputs found

    The Role of miRNAs in Diagnosis, Prognosis and Treatment Prediction in Cervical Cancer

    Get PDF
    Cervical cancer represents one of the major problems of health women worldwide, especially in the developing countries. If discovered in its earliest stages, cervical cancer is successfully treatable; however, due to lack of proper implementation of screening programs, the majority of cervical cancer patients are diagnosed in advanced stages, which dramatically influence their outcome. Almost a half of these patients will suffer recurrence or metastasis in the following 2 years after therapy. If there are no immediate prospects in terms of developing new or more effective therapies, identifying new tools for early diagnosis, prognosis and treatment prediction remains a big challenge for cervical cancer. miRNAs have been validated to be key players in cell physiology, alterations in miRNA expression being associated with cancer progression and response to therapy. Cervical cancer studies have showed that alterations of miRNA expression can be identified in tumor tissues, exfoliated cervical cells and patients serum and that their transcription pattern is regulated by the present HPV genotype. Furthermore, miRNAs have been associated with patients response to therapy, therefore suggesting their potential to be used as biomarkers for cervical cancer diagnosis, prognosis and treatment response

    The Many Faces of Long Noncoding RNAs in Cancer

    Get PDF
    SIGNIFICANCE: The emerging connections between an increasing number of long noncoding RNAs (lncRNAs) and oncogenic hallmarks provide a new twist to tumor complexity. Recent Advances: In the present review, we highlight specific lncRNAs that have been studied in relation to tumorigenesis, either as participants in the neoplastic process or as markers of pathway activity or drug response. These transcripts are typically deregulated by oncogenic or tumor-suppressing signals or respond to microenvironmental conditions such as hypoxia. CRITICAL ISSUES: Among these transcripts are lncRNAs sufficiently divergent between mouse and human genomes that may contribute to biological differences between species. FUTURE DIRECTIONS: From a translational standpoint, knowledge about primate-specific lncRNAs may help explain the reason behind the failure to reproduce the results from mouse cancer models in human cell-based systems. Antioxid. Redox Signal. 29, 922-935

    PDGF beta targeting in cervical cancer cells suggest a fine-tuning of compensatory signalling pathways to sustain tumourigenic stimulation

    Get PDF
    Abstract The platelet-derived growth factor (PDGF) signalling pathway has been reported to play an important role in human cancers by modulating autocrine and paracrine processes such as tumour growth, metastasis and angiogenesis. Several clinical trials document the benefits of targeting this pathway; however, in cervical cancer the role of PDGF signalling in still unclear. In this study, we used siRNA against PDGF beta (PDGFBB) to investigate the cellular and molecular mechanisms of PDGFBB signalling in Ca Ski and HeLa cervical cancer cells. Our results show that PDGFBB inhibition in Ca Ski cells led to rapid alterations of the transcriptional pattern of 579 genes, genes that are known to have antagonistic roles in regulating tumour progression. Concomitantly, with the lack of significant effects on cervical cancer cells proliferation, apoptosis, migration or invasion, these findings suggests that cervical cancer cells shift between compensatory signalling pathways to maintain their behaviour. The observed autocrine effects were limited to cervical cancer cells ability to adhere to an endothelial cell (EC) monolayer. However, by inhibiting PDGFBB on cervical cells, we achieved reduced proliferation of ECs in co-culture settings and cellular aggregation in conditioned media. Because of lack of PDGF receptor expression on ECs, we believe that these effects are a result of indirect PDGFBB paracrine signalling mechanisms. Our results shed some light into the understanding of PDGFBB signalling mechanism in cervical cancer cells, which could be further exploited for the development of synergistic anti-tumour and anti-angiogenic therapeutic strategies

    Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS

    Get PDF
    We hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O2 in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components. Mechanistically, the function of lincNORS requires the presence of RALY, an RNA-binding protein recently found to be implicated in cholesterol homeostasis. We also noticed the proximity between this locus and naturally occurring genetic variations highly significant for sterol/steroid-related phenotypes, in particular the age of sexual maturation. An integrative analysis of these variants provided a more formal link between these phenotypes and lincNORS, further strengthening the case for its biological relevance

    Morphological and Micromorphological Description of the Larvae of Two Endemic Species of Duvalius (Coleoptera, Carabidae, Trechini)

    No full text
    The morphological and ultrastructural descriptions of the larvae of two cave species of Trechini—Duvalius (Hungarotrechus) subterraneus (L. Miller, 1868) and Duvalius (Biharotrechus) paroecus (J. Frivaldszkyi, 1865)—are presented in this paper. The interest in studying these larvae lays in their rarity and the limited distribution of the Duvalius species. The larvae were collected from caves in the Romanian Carpathians and were examined under a stereomicroscope and scanning electron microscopy. New important taxonomical and fine morphological characteristics are discussed together with conclusions on the larvae microhabitat as part of the measures to be taken by a proper management of caves

    Breast Cancer-Delivered Exosomal miRNA as Liquid Biopsy Biomarkers for Metastasis Prediction: A Focus on Translational Research with Clinical Applicability

    No full text
    Metastasis represents the most important cause of breast cancer-associated mortality. Even for early diagnosed stages, the risk of metastasis is significantly high and predicts a grim outcome for the patient. Nowadays, efforts are made for identifying blood-based biomarkers that could reliably distinguish patients with highly metastatic cancers in order to ensure a closer follow-up and a more personalized therapeutic method. Exosomes are nano vesicles secreted by cancer cells that can transport miRNAs, proteins, and other molecules and deliver them to recipient cells all over the body. Through this transfer, cancer cells modulate their microenvironment and facilitate the formation of the pre-metastatic niche, leading to sustained progression. Exosomal miRNAs have been extensively studied due to their promising potential as prognosis biomarkers for metastatic breast cancer. In this review, we tried to depict an overview of the existing literature regarding exosomal miRNAs that are already validated as potential biomarkers, and which could be immediately available for the clinic. Moreover, in the last section, we highlighted several miRNAs that have proven their function in preclinical studies and could be considered for clinical validation. Considering the lack of standard methods for evaluating exosomal miRNA, we also discussed the challenges and the technical aspects underlying this issue

    The Role of Bioactive Dietary Components in Modulating miRNA Expression in Colorectal Cancer

    No full text
    Colorectal cancer is the third most common cancer in the world and considered to be one of the most diet-related types of cancer. Extensive research has been conducted but still the link between diet and colorectal cancer is complex. Recent studies have highlight microRNAs (miRNAs) as key players in cancer-related pathways in the context of dietary modulation. MicroRNAs are involved in most biological processes related to tumor development and progression; therefore, it is of great interest to understand the underlying mechanisms by which dietary patterns and components influence the expression of these powerful molecules in colorectal cancer. In this review, we discuss relevant dietary patterns in terms of miRNAs modulation in colorectal cancer, as well as bioactive dietary components able to modify gene expression through changes in miRNA expression. Furthermore, we emphasize on protective components such as resveratrol, curcumin, quercetin, α-mangostin, omega-3 fatty acids, vitamin D and dietary fiber, with a focus on the molecular mechanisms in the context of prevention and even treatment. In addition, several bioactive dietary components that have the ability to re-sensitize treatment resistant cells are described

    Circulating Small EVs miRNAs as Predictors of Pathological Response to Neo-Adjuvant Therapy in Breast Cancer Patients

    No full text
    Neo-adjuvant therapy (NAT) is increasingly used in the clinic for the treatment of breast cancer (BC). Pathological response to NAT has been associated with improved patients’ survival; however, the current techniques employed for assessing the tumor response have significant limitations. Small EVs (sEVs)-encapsulated miRNAs have emerged as promising new biomarkers for diagnosis and prediction. Therefore, our study aims to explore the predictive value of these miRNAs for the pathological response to NAT in BC. By employing bioinformatic tools, we selected a set of miRNAs and evaluated their expression in plasma sEVs and BC biopsies. Twelve miRNAs were identified in sEVs, of which, miR-21-5p, 221-3p, 146a-5p and 26a-5p were significantly associated with the Miller–Payne (MP) pathological response to NAT. Moreover, miR-21-5p, 146a-5p, 26a-5p and miR-24-3p were independent as predictors of MP response to NAT. However, the expression of these miRNAs showed no correlation between sEVs and tissue samples, indicating that the mechanisms of miRNA sorting into sEVs still needs to be elucidated. Functional analysis of miRNA target genes and drug interactions revealed that candidate miRNAs and their targets, can be regulated by different NAT regimens. This evidence supports their role in governing the patients’ therapy response and highlights their potential use as prediction biomarkers

    Differential peripheral blood gene expression profile based on Her2 expression on primary tumors of breast cancer patients.

    No full text
    Breast cancer prognosis and treatment is highly dependent on the molecular features of the primary tumors. These tumors release specific molecules into the environment that trigger characteristic responses into the circulatory cells. In this study we investigated the expression pattern of 84 genes known to be involved in breast cancer signaling in the peripheral blood of breast cancer patients with ER-, PR- primary tumors. The patients were grouped according to Her2 expression on the primary tumors in Her2+ and Her2- cohorts. Transcriptional analysis revealed 15 genes to be differentially expressed between the two groups highlighting that Her2 signaling in primary tumors could be associated with specific blood gene expression. We found CCNA1 to be up-regulated, while ERBB2, RASSF1, CDH1, MKI67, GATA3, GLI1, SFN, PTGS2, JUN, NOTCH1, CTNNB1, KRT8, SRC, and HIC1 genes were down-regulated in the blood of triple negative breast cancer patients compared to Her2+ cohort. IPA network analysis predicts that the identified genes are interconnected and regulate each other. These genes code for cell cycle regulators, cell adhesion molecules, transcription factors or signal transducers that modulate immune signaling, several genes being also associated with cancer progression and treatment response. These results indicate an altered immune signaling in the peripheral blood of triple negative breast cancer patients. The involvement of the immune system is necessary in favorable treatment response, therefore these results could explain the low response rates observed for triple negative breast cancer patients
    corecore