21 research outputs found

    The fully differential single-top-quark cross section in next-to-leading order QCD

    Get PDF
    We present a new next-to-leading order calculation for fully differential single-top-quark final states. The calculation is performed using phase space slicing and dipole subtraction methods. The results of the methods are found to be in agreement. The dipole subtraction method calculation retains the full spin dependence of the final state particles. We show a few numerical results to illustrate the utility and consistency of the resulting computer implementations.Comment: 37 pages, latex, 2 ps figure

    Gov. Wright's grand march

    No full text
    An illustrated sheet music cover, for a march celebrating the election of Silas Wright as governor of New York. Wright, a popular and influential Democrat and Van Buren ally, was elected in November 1844. The march is dedicated to the new governor by its composer Oliver J. Shaw. The cover is adorned with an elaborately drawn arms of the state of New York. A shield shows the rising sun over a landscape with canal barges; below is the state motto "Excelsior." The shield is flanked by two classical figures: Justice (left) with scales and sword, and Hope holding an anchor and a scythe symbolizing agriculture. Above is an eagle holding arrows, olive branches, and a streamer reading "E Pluribus Unum" and below are olive and oak branches.Entered . . . 1844 by Wm. H. Oakes.For sale by E.H. Wade, 197 Washington St.Thayer & Co's Lith. Boston.The Library's copy of the music-sheet was deposited for copyright on December 24, 1844.Title appears as it is written on the item.Published in: American political prints, 1766-1876 / Bernard F. Reilly. Boston : G.K. Hall, 1991, entry 1844-49

    Monitoring of metabolite gradients in tissue-engineered constructs

    No full text
    At present, the assessment of developing tissue-engineered constructs is almost always carried out destructively using biochemical or histological methods to determine cell number, viability and tissue growth throughout the construct. Since many of these experiments are long, taking weeks or even months to complete, simple and readily applicable non-destructive methods of monitoring changes in cell metabolism, viability and tissue deposition within the construct would be invaluable; such methods could point out adverse responses during the early stages of culture. Here, we describe the use of microdialysis for detecting local changes in cellular metabolism within a tissue-engineered construct. Three-dimensional constructs consisting of bovine articular chondrocytes entrapped in an alginate gel were cultured in a bioreactor for two weeks. Glucose and lactate were monitored by microdialysis, as the major nutrient and metabolite, respectively. Concentration gradients within the construct were evident, with the highest lactate concentrations in the construct centre. The local lactate concentration was a measure of cellular metabolic activity, decreasing as cellular activity fell and increasing as cellular activity was stimulated. Nutrient starvation and cell death in the construct centre could be readily detected in constructs deliberately cultured under adverse conditions. The results show that probe measurements can give an early warning of inappropriate local metabolic changes. Such information during the growth of tissue-engineered constructs would allow either corrective action or else an early end to an unsuccessful test

    Nitric Oxide Stimulates Matrix Synthesis and Deposition by Adult Human Aortic Smooth Muscle Cells Within Three-Dimensional Cocultures

    No full text
    Vascular diseases are characterized by the over-proliferation and migration of aortic smooth muscle cells (SMCs), and degradation of extracellular matrix (ECM) within the vessel wall, leading to compromise in cell–cell and cell–matrix signaling pathways. Tissue engineering approaches to regulate SMC over-proliferation and enhance healthy ECM synthesis showed promise, but resulted in low crosslinking efficiency. Here, we report the benefits of exogenous nitric oxide (NO) cues, delivered from S-Nitrosoglutathione (GSNO), to cell proliferation and matrix deposition by adult human aortic SMCs (HA-SMCs) within three-dimensional (3D) biomimetic cocultures. A coculture platform with two adjacent, permeable 3D culture chambers was developed to enable paracrine signaling between vascular cells. HA-SMCs were cultured in these chambers within collagen hydrogels, either alone or in the presence of human aortic endothelial cells (HA-ECs) cocultures, and exogenously supplemented with varying GSNO dosages (0–100 nM) for 21 days. Results showed that EC cocultures stimulated SMC proliferation within GSNO-free cultures. With increasing GSNO concentration, HA-SMC proliferation decreased in the presence or absence of EC cocultures, while HA-EC proliferation increased. GSNO (100 nM) significantly enhanced the protein amounts synthesized by HA-SMCs, in the presence or absence of EC cocultures, while lower dosages (1–10 nM) offered marginal benefits. Multi-fold increases in the synthesis and deposition of elastin, glycosaminoglycans, hyaluronic acid, and lysyl oxidase crosslinking enzyme (LOX) were noted at higher GSNO dosages, and coculturing with ECs significantly furthered these trends. Similar increases in TIMP-1 and MMP-9 levels were noted within cocultures with increasing GSNO dosages. Such increases in matrix synthesis correlated with NO-stimulated increases in endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expression within EC and SMC cultures, respectively. Results attest to the benefits of delivering NO cues to suppress SMC proliferation and promote robust ECM synthesis and deposition by adult human SMCs, with significant applications in tissue engineering, biomaterial scaffold development, and drug delivery
    corecore