6 research outputs found

    Characterization of eDNA from the Clinical Strain Acinetobacter baumannii AIIMS 7 and Its Role in Biofilm Formation

    Get PDF
    Release of extracellular DNA (eDNA) was observed during in vitro growth of a clinical strain of Acinetobacter baumannii. Membrane vesicles (MV) of varying diameter (20–200 nm) containing DNA were found to be released by transmission electron microscopy (TEM) and atomic force microscopy (AFM). An assessment of the characteristics of the eDNA with respect to size, digestion pattern by DNase I/restriction enzymes, and PCR-sequencing, indicates a high similarity with genomic DNA. Role of eDNA in static biofilm formed on polystyrene surface was evaluated by biofilm augmentation assay using eDNA available in different preparations, for example, whole cell lysate, cell-free supernatant, MV suspension, and purified eDNA. Biofilm augmentation was seen up to 224.64%, whereas biofilm inhibition was 59.41% after DNase I treatment: confirming that eDNA facilitates biofilm formation in A. baumannii. This is the first paper elucidating the characteristics and role of eDNA in A. baumannii biofilm, which may provide new insights into its pathogenesis

    Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages

    Get PDF
    Abstract Background Interleukin-33 is a member of the IL-1 cytokine family whose functions are mediated and modulated by the ST2 receptor. IL-33-ST2 expression and interactions have been explored in mouse macrophages but little is known about the effect of IL-33 on human macrophages. The expression of ST2 transcript and protein levels, and IL-33-mediated effects on M1 (i.e. classical activation) and M2 (i.e. alternative activation) chemokine marker expression in human bone marrow-derived macrophages were examined. Results Human macrophages constitutively expressed the membrane-associated (i.e. ST2L) and the soluble (i.e. sST2) ST2 receptors. M2 (IL-4 + IL-13) skewing stimuli markedly increased the expression of ST2L, but neither polarizing cytokine treatment promoted the release of sST2 from these cells. When added to naïve macrophages alone, IL-33 directly enhanced the expression of CCL3. In combination with LPS, IL-33 blocked the expression of the M2 chemokine marker CCL18, but did not alter CCL3 expression in these naive cells. The addition of IL-33 to M1 macrophages markedly increased the expression of CCL18 above that detected in untreated M1 macrophages. Similarly, alternatively activated human macrophages treated with IL-33 exhibited enhanced expression of CCL18 and the M2 marker mannose receptor above that detected in M2 macrophages alone. Conclusions Together, these data suggest that primary responses to IL-33 in bone marrow derived human macrophages favors M1 chemokine generation while its addition to polarized human macrophages promotes or amplifies M2 chemokine expression.http://deepblue.lib.umich.edu/bitstream/2027.42/78250/1/1471-2172-11-52.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78250/2/1471-2172-11-52.pdfPeer Reviewe

    A Micro RNA Processing Defect in Rapidly Progressing Idiopathic Pulmonary Fibrosis

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis exhibits differential progression from the time of diagnosis but the molecular basis for varying progression rates is poorly understood. The aim of the present study was to ascertain whether differential miRNA expression might provide one explanation for rapidly versus slowly progressing forms of IPF. METHODOLOGY AND PRINCIPAL FINDINGS: miRNA and mRNA were isolated from surgical lung biopsies from IPF patients with a clinically documented rapid or slow course of disease over the first year after diagnosis. A quantitative PCR miRNA array containing 88 of the most abundant miRNA in the human genome was used to profile lung biopsies from 9 patients with rapidly progressing IPF, 6 patients with slowly progressing IPF, and 10 normal lung biopsies. Using this approach, 11 miRNA were significantly increased and 36 were significantly decreased in rapid biopsies compared with normal biopsies. Slowly progressive biopsies exhibited 4 significantly increased miRNA and 36 significantly decreased miRNA compared with normal lung. Among the miRNA present in IPF with validated mRNA targets were those with regulatory effects on epithelial-mesenchymal transition (EMT). Five miRNA (miR-302c, miR-423-5p, miR-210, miR-376c, and miR-185) were significantly increased in rapid compared with slow IPF lung biopsies. Additional analyses of rapid biopsies and fibroblasts grown from the same biopsies revealed that the expression of AGO1 and AGO2 (essential components of the miRNA processing RISC complex) were lower compared with either slow or normal lung biopsies and fibroblasts. CONCLUSION: These findings suggest that the development and/or clinical progression of IPF might be the consequence of aberrant miRNA processing

    Coalition Governments in a Model of Parliamentary Democracy

    No full text
    We analyze the relative importance of party ideology and rents from office in the formation of coalitions in a parliamentary democracy. In equilibrium, the types of coalitions that are formed may be minimal winning, minority or surplus and they may be ideologically `disconnected'. The coalitions that form depend upon the relative importance of rents of office and seat shares of the parties. If rents are high, governments cannot be surplus. With low rents or the formateur close to the median, minority governments occur for a wider ideological dispersion. Further, there is a non-monotonic relationship between connectedness of coalitions and rents
    corecore