39 research outputs found

    Three-body interactions in colloidal systems

    Full text link
    We present the first direct measurement of three-body interactions in a colloidal system comprised of three charged colloidal particles. Two of the particles have been confined by means of a scanned laser tweezers to a line-shaped optical trap where they diffused due to thermal fluctuations. Upon the approach of a third particle, attractive three-body interactions have been observed. The results are in qualitative agreement with additionally performed nonlinear Poissson-Boltzmann calculations, which also allow us to investigate the microionic density distributions in the neighborhood of the interacting colloidal particles

    Low temperature electronic properties of Sr_2RuO_4 I: Microscopic model and normal state properties

    Full text link
    Starting from the quasi one-dimensional kinetic energy of the d_{yz} and d_{zx} bands we derive a bosonized description of the correlated electron system in Sr_2RuO_4. At intermediate coupling the magnetic correlations have a quasi one-dimensional component along the diagonals of the basal plane of the tetragonal unit cell that accounts for the observed neutron scattering results. Together with two-dimensional correlations the model consistently accounts for the normal phase specific heat, cyclotron mass enhancement, static susceptibility, and Wilson ratio and implies an anomalous high temperature resistivity.Comment: 12 pages REVTEX, 6 figure

    Interferometry with independent Bose-Einstein ondensates: parity as an EPR/Bell quantum variable

    Get PDF
    When independent Bose-Einstein condensates (BEC), described quantum mechanically by Fock (number) states, are sent into interferometers, the measurement of the output port at which the particles are detected provides a binary measurement, with two possible results ±1\pm1. With two interferometers and two BEC's, the parity (product of all results obtained at each interferometer) has all the features of an Einstein-Podolsky-Rosen quantity, with perfect correlations predicted by quantum mechanics when the settings (phase shifts of the interferometers) are the same. When they are different, significant violations of Bell inequalities are obtained. These violations do not tend to zero when the number NN of particles increases, and can therefore be obtained with arbitrarily large systems, but a condition is that all particles should be detected. We discuss the general experimental requirements for observing such effects, the necessary detection of all particles in correlation, the role of the pixels of the CCD detectors, and that of the alignments of the interferometers in terms of matching of the wave fronts of the sources in the detection regions. Another scheme involving three interferometers and three BEC's is discussed; it leads to Greenberger Horne Zeilinger (GHZ) sign contradictions, as in the usual GHZ case with three particles, but for an arbitrarily large number of them. Finally, generalizations of the Hardy impossibilities to an arbitrarily large number of particles are introduced. BEC's provide a large versality for observing violations of local realism in a variety of experimental arrangements.Comment: appendix adde

    Luminescence spectra and kinetics of disordered solid solutions

    Get PDF
    We have studied both theoretically and experimentally the luminescence spectra and kinetics of crystalline, disordered solid solutions after pulsed excitation. First, we present the model calculations of the steady-state luminescence band shape caused by recombination of excitons localized in the wells of random potential induced by disorder. Classification of optically active tail states of the main exciton band into two groups is proposed. The majority of the states responsible for the optical absorption corresponds to the group of extended states belonging to the percolation cluster, whereas only a relatively small group of “radiative” states forms the steady-state luminescence band. The continuum percolation theory is applied to distinguish the “radiative” localized states, which are isolated in space and have no ways for nonradiative transitions along the tail states. It is found that the analysis of the exciton-phonon interaction gives the information about the character of the localization of excitons. We have shown that the model used describes quite well the experimental cw spectra of CdS(1−c)Sec and ZnSe(1−c)Tec solid solutions. Further, the experimental results are presented for the temporal evolution of the luminescence band. It is shown that the changes of band shape with time come from the interplay of population dynamics of extended states and spatially isolated “radiative” states. Finally, the measurements of the decay of the spectrally integrated luminescence intensity at long delay times are presented. It is shown that the observed temporal behavior can be described in terms of relaxation of separated pairs followed by subsequent exciton formation and radiative recombination. Electron tunneling processes are supposed to be responsible for the luminescence in the long-time limit at excitation below the exciton mobility edge. At excitation by photons with higher energies the diffusion of electrons can account for the observed behavior of the luminescence

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed

    Data descriptor: a global multiproxy database for temperature reconstructions of the Common Era

    Get PDF
    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python. (TABLE) Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013'). This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product. This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike

    Quantum resonant effects in the delta-kicked rotor revisited

    No full text
    We review the theoretical model and experimental realization of the atom optics ή−\delta-kicked rotor (AOKR), a paradigm of classical and quantum chaos. We have performed a number of experiments with an all-optical Bose-Einstein condensate (BEC) in a periodic standing wave potential in an AOKR system. We discuss results of the investigation of the phenomena of quantum resonances in the AOKR. An interesting feature of the momentum distribution of the atoms obtained as a result of short pulses of light, is the variance of the momentum distribution or the kinetic energy /2m/2m in units of the recoil energy Erec=ℏωrecE_{rec} = \hbar \omega_{rec}. The energy of the system is examined as a function of pulse period for a range of kicks that allow the observation of quantum resonances. In particular we study the behavior of these resonances for a large number of kicks. Higher order quantum resonant effects corresponding to the fractional Talbot time of (1/4)TTT_{T} and (1/5)TTT_{T} for five and ten kicks have been observed. Moreover, we describe the effect of the initial momentum of the atoms on quantum resonances in the AOKR.Comment: 30 pages, 17 figure
    corecore