8 research outputs found

    Two-photon anisotropy: Analytical description and molecular modeling for symmetrical and asymmetrical organic dyes

    No full text
    One- and two-photon anisotropy spectra of a series of symmetrical and asymmetrical polymethine (PD) and fluorene molecules were measured experimentally and discussed theoretically within the framework of three-state and four-state models. For all the molecules discussed in this paper, the experimental two-photon anisotropy values, r(2PA), lie in the relatively narrow range from 0.47 to 0.57 and remain almost independent of wavelength over at least two electronic transitions. This is in contrast with their one-photon anisotropy, which shows strong wavelength dependence, typically varying from approximate to 0 to 0.38 over the same transitions. A detailed analysis of the two-photon absorption (2PA) processes allows us to conclude that a three-state model can explain the 2PA anisotropy spectra of most asymmetrical PDs and fluorenes. However, this model is inadequate for all the symmetrical molecules. Experimental values Of r2PA for symmetrical polymethines and fluorenes can be explained by symmetry breaking leading to the deviation of the orientation of the participating transition dipole moments from their 'classical' orientations. (c) 2005 Elsevier B.V. All rights reserved.321325726

    Temporal and spectral nonlinear absorption characterization of a hybrid porphyrin-squaraine-porphyrin macromolecule

    No full text
    The nonlinear absorption mechanisms of a porphyrin-squaraine-porphyrin macromolecule have been studied with femto/pico/nanosecond pulsewidths. Two-photon absorption of the macromolecule is ̃10× larger than the constituents and is explained by intra-molecular charge transfer. © 2008 Optical Society of America

    Temporal and spectral nonlinear absorption characterization of a hybrid porphyrin-squaraine-porphyrin macromolecule

    No full text
    The nonlinear absorption mechanisms of a porphyrin-squaraine-porphyrin macromolecule have been studied with femto/pico/nanosecond pulsewidths. Two-photon absorption of the macromolecule is ̃10× larger than the constituents and is explained by intra-molecular charge transfer. © 2008 Optical Society of America

    Nonlinear absorption spectroscopy of a bis(Porphyrin)-substituted squaraine

    No full text
    The nonlinear absorption mechanisms of a bis(porphyrin)-substituted squaraine have been studied with femtosecond, picosecond, and nanosecond pulsewidths. The two-photon absorption is ~10× larger than those of the constituents and is explained by intra-molecular charge transfer. © 2009 Optical Society of America

    Nonlinear absorption spectroscopy of a bis(Porphyrin)-substituted squaraine

    No full text
    The nonlinear absorption mechanisms of a bis(porphyrin)-substituted squaraine have been studied with femtosecond, picosecond, and nanosecond pulsewidths. The two-photon absorption is ~10× larger than those of the constituents and is explained by intra-molecular charge transfer. © 2009 Optical Society of America

    Linear and nonlinear spectroscopy of a porphyrin-squaraine-porphyrin conjugated system.

    No full text
    The linear and nonlinear absorption properties of a squaraine-bridged porphyrin dimer (POR-SQU-POR) are investigated using femto-, pico-, and nanosecond pulses to understand intramolecular processes, obtain molecular optical parameters, and perform modeling of the excited-state dynamics. The optical behavior of POR-SQU-POR is compared with its separate porphyrin and squaraine constituent moieties. Linear spectroscopic studies include absorption, fluorescence, excitation and emission anisotropy, and quantum yield measurements. Nonlinear spectroscopic studies are performed across a wide range (approximately 150 fs, approximately 25 ps, and approximately 5 ns) of pulsewidths and include two-photon absorption (2PA), single and double pump-probe, and Z-scan measurements with detailed analysis of excited-state absorption induced by both one- and two-photon absorption processes. The 2PA from the constituent moieties shows relatively small 2PA cross sections; below 10 GM (1 GM = 1 x 10(-50) cm4 s/photon) for the porphyrin constituent and below 100 GM for the squaraine constituent except near their one-photon resonances. In stark contrast, the composite POR-SQU-POR molecule shows 2PA cross sections greater than 10(3) GM over most of the spectral range from 850 to 1600 nm (the minimum value being 780 GM at 1600 nm). The maximum value is approximately 11,000 GM near the Nd:YAG laser wavelength of 1064 nm. This broad spectral range of large 2PA cross sections is unprecedented in any other molecular system and can be explained by intramolecular charge transfer. A theoretical quantum-chemical analysis in combination with different experimental techniques allows insight into the energy-level structure and origin of the nonlinear absorption behavior of POR-SQU-POR

    Synthesis and two-photon spectrum of a bis(porphyrin)-substituted squaraine.

    No full text
    A chromophore in which zinc porphyrin donors are linked through their meso positions by ethynyl bridges to a bis(indolinylidenemethyl) squaraine core has been synthesized using Sonogashira coupling. The chromophore exhibits a two-photon absorption spectrum characterized by a peak cross section of 11,000 GM and, more unusually, also exhibits a large cross section of >780 GM over a photon-wavelength window 750 nm in width

    Optimization of the Coupling of Target Recognition and Signal Generation

    No full text
    corecore