20 research outputs found

    Solution-Processable Near-IR Photodetectors Based on Electron Transfer from PbS Nanocrystals to Fullerene Derivatives

    No full text
    Nanocrystal/fullerene derivative inorganic-organic hybrid photodetectors exhibiting high detectivity for near-IR wavelengths and a linear power dependence are produced. The ultrafast electron transfer from the PbS crystals to the fullerene opens a new route to obtaining efficient photodetectors that are appealing, cost-effective alternatives to the currently available technology

    Normal and inverted regimes of charge transfer controlled by density of states at polymer electrodes

    No full text
    Conductive polymer electrodes have exceptional promise for next-generation bioelectronics and energy conversion devices due to inherent mechanical flexibility, printability, biocompatibility, and low cost. Conductive polymers uniquely exhibit hybrid electronic-ionic transport properties that enable novel electrochemical device architectures, an advantage over inorganic counterparts. Yet critical structure-property relationships to control the potential-dependent rates of charge transfer at polymer/electrolyte interfaces remain poorly understood. Herein, we evaluate the kinetics of charge transfer between electrodeposited poly-(3-hexylthiophene) films and a model redox-active molecule, ferrocenedimethanol. We show that the kinetics directly follow the potential-dependent occupancy of electronic states in the polymer. The rate increases then decreases with potential *(both normal and inverted kinetic regimes), a phenomenon distinct from inorganic semiconductors. This insight can be invoked to design polymer electrodes with kinetic selectivity toward redox active species and help guide synthetic approaches for the design of alternative device architectures and approaches.Defense and Security Research Institute through the Technology and Research Initiative Fund (TRIF) of ArizonaUA Open Access Publishing Fund.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore