8 research outputs found

    Nonlinear electrophoresis of dielectric and metal spheres in a nematic liquid crystal

    Full text link
    Electrophoresis is a motion of charged dispersed particles relative to a fluid in a uniform electric field. The effect is widely used to separate macromolecules, to assemble colloidal structures, to transport particles in nano- and micro-fluidic devices and displays. Typically, the fluid is isotropic (for example, water) and the electrophoretic velocity is linearly proportional to the electric field. In linear electrophoresis, only a direct current (DC) field can drive the particles. An alternate current (AC) field is more desirable because it allows one to overcome problems such as electrolysis and absence of steady flows. Here we show that when the electrophoresis is performed in a nematic fluid, the effect becomes strongly non-linear with a velocity component that is quadratic in the applied voltage and has a direction that generally differs from the direction of linear velocity. The new phenomenon is caused by distortions of the LC orientation around the particle that break the fore-aft (or left-right) symmetry. The effect allows one to transport both charged and neutral particles, even when the particles themselves are perfectly symmetric (spherical), thus enabling new approaches in display technologies, colloidal assembly, separation, microfluidic and micromotor applications.Comment: 15 pages, 4 figure

    Photo-orientation of liquid crystals due to light-induced desorption and adsorption of dye molecules on an aligning surface

    No full text
    none8siWe show that adsorption of dye molecules control the light-induced alignment of dye-doped nematic liquid crystal (LC) on a nonphotosensitive polymer surface. The dependencies of light-induced twist structures on exposure, thermal baking, thickness, and aging before irradiation of the LC cells allowed us to propose the following mechanism for the alignment. Before irradiation, the "dark"-adsorbed layer on the tested surface is formed from dye molecules predominantly aligned along the initial direction of the director. Irradiation of the cell with linearly polarized light produces an additional layer with different orientational ordering of dye molecules. The final easy axis is determined by the competition of "dark" and light-induced contributions to anchoring and is aligned between the "dark" easy axes and polarization of the light. For quantitative interpretation, we apply the tensor model of anchoring and assume that the photoalignment in the mesophase is a cumulative effect of the light-induced anchoring on the background of the already existing anisotropic "dark" dye layer.E. OUSKOVA; YU. REZNIKOV; S.V. SHIYANOVSKII; L. SU; J.L. WEST; O.V. KUKSENOK; O. FRANCESCANGELI; F. SIMONIE., Ouskova; Reznikov, Y. U.; S. V., Shiyanovskii; L., Su; J. L., West; O. V., Kuksenok; Francescangeli, Oriano; Simoni, Francesc

    Maximizing memory

    No full text
    corecore