16 research outputs found

    Optimisation du rendement propulsif d'une aile battante par la MĂ©thode de Surface des RĂ©ponses

    Get PDF
    Dans la présente étude, le rendement propulsif d’un profil d’aile NACA0012 en mouvement de battement est optimisé à un nombre de Reynolds de Re = 1.1 × 10^4. Il s’agit d’une étude numérique 2D réalisée caractériser l’évolution du rendement propulsif en fonction des paramètres cinématiques de aile battante. Pour résoudre les équations de Navier-Stokes autour de l'aile battantes nous avons utilisé un solver 2D instationnaire avec un couplage Pression-Vitesse SIMPLEC. Pour la discrétisation spatiale on a utilisé le schéma convectif MUSCL de 3ème ordre avec une discrétisation temporelle du premier ordre. L'amplitude du mouvement de pilonnement, l’amplitude maximale du mouvement de tangage, la fréquence de battement et l’angle de phase entre ces deux mouvements sont considérés comme variables d’optimisation. Le battement du profil d’aile est réalisé grâce à l’utilisation des fonctions UDF et du module maillage dynamique, disponible dans Ansys Fluent. La Méthode des Surfaces des Réponses (MSR) est utilisé pour l’optimisation du rendement propulsif en fonction des paramètres cinématiques de l'aile. Un plan d’expérience complet avec 5 évaluations pour chaque variable a été élaboré pour conduire les simulations et obtenir les différentes combinaisons des paramètres de contrôle. Pour la prédiction de la réponse nous avons calculé les coefficients du méta-modèle de la MSR en utilisant des fonctions polynomiale . Le processus d’optimisation du méta-modèle est piloté par la technique du recuit simulé disponible sous MATLAB. Les résultats montrent que la méthode des surfaces de réponses est suffisamment robuste et donne, approximativement, les mêmes résultats que la méthode de montée de gradient. L’erreur relative entre le rendement propulsif obtenu par approximation en utilisant la RSM et celui obtenu par simulation numérique est très petite. Cela justifie très largement le recours à cette méthode. A la lumière des résultats obtenus, en plus de sa rapidité, la méthode des surfaces de réponse présente l’avantage d’être facile à implémenter, cependant, l’approximation quadratique qu’elle utilise est limitée à un certain nombre de variables d’optimisation

    Numerical investigation of the effect of motion trajectory on the vortex shedding process behind a flapping airfoil

    Get PDF
    The effect of non-sinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA 0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (11 000) is considered. An elliptic function with an adjustable parameter S (flatness coefficient) is used to realize various non-sinusoidal trajectories. The two-dimensional unsteady and incompressible Navier-Stokes equation governing the flow over the flapping airfoil is resolved using the commercial so ware STAR CCM+. It is shown that the combination of sinusoidal and non-sinusoidal mapping motion has a great effect on the propulsive performances of the flapping airfoil. The maximum propulsive efficiency is always achievable with sinusoidal trajectories. However, non-sinusoidal trajectories are found to considerably improve the propulsive force up to 52% larger than its natural value. Flow visualization shows that the vortex shedding process and the wake structure are substantially altered under the non-sinusoidal trajectory effect. Depending on the nature of the flapping trajectory, several modes of vortex shedding are identified and presented in this paper

    Experimental investigation of an actively controlled automotive cooling fan using steady air injection in the leakage gap

    Get PDF
    ne pas mettre sur hal c'est déjà faitIn an axial fan, a leakage flow driven by a pressure gradient between the pressure side and the suction side occurs in the gap between the shroud and the casing. This leakage flow is in the opposite direction to the main flow and is responsible for significant energy dissipation. Therefore, many authors have worked to understand this phenomenon in order to reduce these inherent energy losses. Up to now, most of the studies reported in the literature have been passive solutions. In this paper, an experimental controlling strategy is suggested to reduce the leakage flow rate. To this end, a fan with hollow blades and a specific drive system were designed and built for air injection. Air is injected in the leakage gap at the fan periphery. The experiment was performed for three rotation speeds, five injection rates and two configurations: 16 and 32 injection holes on the fan's circumference. The experimental results of this investigation are presented in this articl

    Active control of the leakage flow by air injection into the rotational shroud or the fixed carter of an axial fan composed of hollow blades

    Get PDF
    In axial fan, the static pressure difference between the suction and the pressure side of the impeller produces a leakage flow through the blade and the casing. This secondary flow occurs in the opposite direction of the working flow and has a negative impact on the overall performances. It tends to reduce the pressure coefficient, the efficiency and the fan operating range while increasing the noise level. That is why many studies dealt with ways to reduce this leakage flow. In this paper, the study focusses on the control of the secondary flow by air injection. Two ways to control this flow are compared. In a first case, the air is ejected from the fixed casing and in a second case the air exit from the rotating shrouds. In both configurations, the ejected air has a direction to counter the leakage flow. To realize the second configuration, a new method to build fan with hollow blades was developed. This new kind of fan allows having internal flows which could exit by any area of the fan. The results obtained by the active controls on the fan characteristic and the efficiency are presented in this article

    Taylor-Couette flow control using the outer cylinder cross-section variation strategy

    No full text
    A numerical study of a controlled flow evolving in a Taylor-Couette system is presented in this paper. The study is devoted to investigate the effect of the outer cylinder cross-section variation on the flow behavior. It is aimed to make assessment of the flow response in terms of the criticality of the early transitional flow regimes and the accompanying flow topology alterations. The numerical simulations are carried out on the Fluent software package for a three-dimensional incompressible flow. The basic system is characterized by a height H = 200 mm, a ratio of the inner to the outer cylinders radii η = 0.9, an aspect ratio corresponding to the cylinders height reported to the gap length Г = 40 and a ratio of the gap to the radius of the inner cylinder δ = 0.1. The numerical deformation of the outer cylinder is executed using the dynamic mesh program according to a predefined function implemented in a homemade program as an UDF (user defined function). It is established that the first instability mode of transition is retarded from Tac1 = 41.33, corresponding to the first Taylor number critical value, to Tac1 = 70 when the deforming amplitude is equal to 15% the external cylinder diameter value. This flow relaminarization process is accompanied by substantial modifications in the flow behavior and configuration

    Taylor-Couette flow control by amplitude variation of the inner cylinder cross-section oscillation

    No full text
    The hydrodynamic stability of a viscous fluid flow evolving in an annular space between a rotating inner cylinder with a periodically variable radius and an outer fixed cylinder is considered. The basic flow is axis-symmetric with two counter-rotating vortices each wavelength along the whole filled system length. The numerical simulations are implemented on the commercial Fluent software package, a finite-volume CFD code. It is aimed to make investigation of the early flow transition with assessment of the flow response to radial pulsatile motion superimposed to the inner cylinder cross-section as an extension of a previous developed work in Oualli et al. [H. Oualli, A. Lalaoua, S. Hanchi, A. Bouabdallah, Eur. Phys. J. Appl. Phys. 61, 11102 (2013)] where a comparative controlling strategy is applied to the outer cylinder. The same basic system is considered with similar calculating parameters and procedure. In Oualli et al. [H. Oualli, A. Lalaoua, S. Hanchi, A. Bouabdallah, Eur. Phys. J. Appl. Phys. 61, 11102 (2013)], it is concluded that for the actuated outer cylinder and relatively to the non-controlled case, the critical Taylor number, Tac1, characterizing the first instability onset illustrated by the piled Taylor vortices along the gap, increases substantially to reach a growing rate of 70% when the deforming amplitude is ε = 15%. Interestingly, when this controlling strategy is applied to the inner cylinder cross-section with a slight modification of the actuating law, this tendency completely inverts and the critical Taylor number decreases sharply from Tac1 = 41.33 to Tac1 = 17.66 for ε = 5%, corresponding to a reduction rate of 57%. Fundamentally, this result is interesting and can be interpreted by prematurely triggering instabilities resulting in rapid development of flow turbulence. Practically, important applicative aspects can be met in several industry areas where substantial intensification of transport phenomena (mass, momentum and heat) is needed such as in chemical reactors, combustors, heat exchangers and cylindrical water filters

    Volumetric 3-component velocimetry measurements of the flow field on the rear window of a generic car model

    No full text
    Volumetric 3-component Velocimetry measurements are carried out in the flow field around the rear window of a generic car model, the so-called Ahmed body. This particular flow field is known to be highly unsteady, three dimensional and characterized by strong vortices. The volumetric velocity measurements from the present experiments provide the most comprehensive data for this flow field to date. The present study focuses on the wake flow modifications which result from using a simple flow control device, such as the one recently employed by Fourrié et al. [1]. The mean data clearly show the structure of this complex flow and confirm the drag reduction mechanism suggested by Fourrié et al. The results show that strengthening the separated flow leads to weakening the longitudinal vortices and vice versa. The present paper shows that the Volumetric 3-component Velocimetry technique is a powerful tool used for a better understanding of a threedimensional unsteady complex flow such that developing around a bluffbody
    corecore