32 research outputs found
A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit
We describe a new MCMC method optimized for the sampling of probability
measures on Hilbert space which have a density with respect to a Gaussian; such
measures arise in the Bayesian approach to inverse problems, and in conditioned
diffusions. Our algorithm is based on two key design principles: (i) algorithms
which are well-defined in infinite dimensions result in methods which do not
suffer from the curse of dimensionality when they are applied to approximations
of the infinite dimensional target measure on \bbR^N; (ii) non-reversible
algorithms can have better mixing properties compared to their reversible
counterparts. The method we introduce is based on the hybrid Monte Carlo
algorithm, tailored to incorporate these two design principles. The main result
of this paper states that the new algorithm, appropriately rescaled, converges
weakly to a second order Langevin diffusion on Hilbert space; as a consequence
the algorithm explores the approximate target measures on \bbR^N in a number
of steps which is independent of . We also present the underlying theory for
the limiting non-reversible diffusion on Hilbert space, including
characterization of the invariant measure, and we describe numerical
simulations demonstrating that the proposed method has favourable mixing
properties as an MCMC algorithm.Comment: 41 pages, 2 figures. This is the final version, with more comments
and an extra appendix adde
Asymptotic analysis for the generalized langevin equation
Various qualitative properties of solutions to the generalized Langevin
equation (GLE) in a periodic or a confining potential are studied in this
paper. We consider a class of quasi-Markovian GLEs, similar to the model that
was introduced in \cite{EPR99}. Geometric ergodicity, a homogenization theorem
(invariance principle), short time asymptotics and the white noise limit are
studied. Our proofs are based on a careful analysis of a hypoelliptic operator
which is the generator of an auxiliary Markov process. Systematic use of the
recently developed theory of hypocoercivity \cite{Vil04HPI} is made.Comment: 27 pages, no figures. Submitted to Nonlinearity
A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit
We describe a new MCMC method optimized for the sampling of probability measures on Hilbert space which have a density with respect to a Gaussian; such measures arise in the Bayesian approach to inverse problems, and in conditioned diffusions. Our algorithm is based on two key design principles: (i) algorithms which are well defined in infinite dimensions result in methods which do not suffer from the curse of dimensionality when they are applied to approximations of the infinite dimensional target measure on R^N; (ii) nonreversible algorithms can have better mixing properties compared to their reversible counterparts. The method we introduce is based on the hybrid Monte Carlo algorithm, tailored to incorporate these two design principles. The main result of this paper states that the new algorithm, appropriately rescaled, converges weakly to a second order Langevin diffusion on Hilbert space; as a consequence the algorithm explores the approximate target measures on R^N in a number of steps which is independent of N. We also present the underlying theory for the limiting nonreversible diffusion on Hilbert space, including characterization of the invariant measure, and we describe numerical simulations demonstrating that the proposed method has favourable mixing properties as an MCMC algorithm
Ergodic properties of quasi-Markovian generalized Langevin equations with configuration dependent noise and non-conservative force
We discuss the ergodic properties of quasi-Markovian stochastic differential
equations, providing general conditions that ensure existence and uniqueness of
a smooth invariant distribution and exponential convergence of the evolution
operator in suitably weighted spaces, which implies the validity
of central limit theorem for the respective solution processes. The main new
result is an ergodicity condition for the generalized Langevin equation with
configuration-dependent noise and (non-)conservative force
Using perturbed underdamped langevin dynamics to efficiently sample from probability distributions
In this paper we introduce and analyse Langevin samplers that consist of perturbations of the standard underdamped Langevin dynamics. The perturbed dynamics is such that its invariant measure is the same as that of the unperturbed dynamics. We show that appropriate choices of the perturbations can lead to samplers that have improved properties, at least in terms of reducing the asymptotic variance. We present a detailed analysis of the new Langevin sampler for Gaussian target distributions. Our theoretical results are supported by numerical experiments with non-Gaussian target measures
Intent matters: how flow and forms of information impact collective navigation
: The phenomenon of collective navigation has received considerable interest in recent years. A common line of thinking, backed by theoretical studies, is that collective navigation can improve navigation efficiency through the 'many-wrongs' principle, whereby individual error is reduced by comparing the headings of neighbours. When navigation takes place in a flowing environment, each individual's trajectory is influenced by drift. Consequently, a potential discrepancy emerges between an individual's intended heading and its actual heading. In this study, we develop a theoretical model to explore whether collective navigation benefits are altered according to the form of heading information transmitted between neighbours. Navigation based on each individual's intended heading is found to confer robust advantages across a wide spectrum of flows, via both a marked improvement in migration times and a capacity for a group to overcome flows unnavigable by solitary individuals. Navigation based on individual's actual headings is far less effective, only offering an improvement under highly favourable currents. For many currents, sharing actual heading information can even lead to journey times that exceed those of individual navigators