12,000 research outputs found

    Nonlinear magnetoplasmons in strongly coupled Yukawa plasmas

    Full text link
    The existence of plasma oscillations at multiples of the magnetoplasmon frequency in a strongly coupled two-dimensional magnetized Yukawa plasma is reported, based on extensive molecular dynamics simulations. These modes are the analogues of Bernstein modes which are renormalized by strong interparticle correlations. Their properties are theoretically explained by a dielectric function incorporating the combined effect of a magnetic field, strong correlations and finite temperature

    Bifurcations and Chaos in Time Delayed Piecewise Linear Dynamical Systems

    Full text link
    We reinvestigate the dynamical behavior of a first order scalar nonlinear delay differential equation with piecewise linearity and identify several interesting features in the nature of bifurcations and chaos associated with it as a function of the delay time and external forcing parameters. In particular, we point out that the fixed point solution exhibits a stability island in the two parameter space of time delay and strength of nonlinearity. Significant role played by transients in attaining steady state solutions is pointed out. Various routes to chaos and existence of hyperchaos even for low values of time delay which is evidenced by multiple positive Lyapunov exponents are brought out. The study is extended to the case of two coupled systems, one with delay and the other one without delay.Comment: 34 Pages, 14 Figure

    Renormalization of the periodic Anderson model: an alternative analytical approach to heavy Fermion behavior

    Full text link
    In this paper a recently developed projector-based renormalization method (PRM) for many-particle Hamiltonians is applied to the periodic Anderson model (PAM) with the aim to describe heavy Fermion behavior. In this method high-energetic excitation operators instead of high energetic states are eliminated. We arrive at an effective Hamiltonian for a quasi-free system which consists of two non-interacting heavy-quasiparticle bands. The resulting renormalization equations for the parameters of the Hamiltonian are valid for large as well as small degeneracy νf\nu_f of the angular momentum. An expansion in 1/νf1/\nu_f is avoided. Within an additional approximation which adapts the idea of a fixed renormalized \textit{f} level ϵ~f\tilde{\epsilon}_{f}, we obtain coupled equations for ϵ~f\tilde{\epsilon}_{f} and the averaged \textit{f} occupation . These equations resemble to a certain extent those of the usual slave boson mean-field (SB) treatment. In particular, for large νf\nu_f the results for the PRM and the SB approach agree perfectly whereas considerable differences are found for small νf\nu_f.Comment: 26 pages, 5 figures included, discussion of the DOS added in v2, accepted for publication in Phys. Rev.

    Ultracold Atoms as a Target: Absolute Scattering Cross-Section Measurements

    Full text link
    We report on a new experimental platform for the measurement of absolute scattering cross-sections. The target atoms are trapped in an optical dipole trap and are exposed to an incident particle beam. The exponential decay of the atom number directly yields the absolute total scattering cross-section. The technique can be applied to any atomic or molecular species that can be prepared in an optical dipole trap and provides a large variety of possible scattering scenarios

    Quantifying Spatiotemporal Chaos in Rayleigh-B\'enard Convection

    Full text link
    Using large-scale parallel numerical simulations we explore spatiotemporal chaos in Rayleigh-B\'enard convection in a cylindrical domain with experimentally relevant boundary conditions. We use the variation of the spectrum of Lyapunov exponents and the leading order Lyapunov vector with system parameters to quantify states of high-dimensional chaos in fluid convection. We explore the relationship between the time dynamics of the spectrum of Lyapunov exponents and the pattern dynamics. For chaotic dynamics we find that all of the Lyapunov exponents are positively correlated with the leading order Lyapunov exponent and we quantify the details of their response to the dynamics of defects. The leading order Lyapunov vector is used to identify topological features of the fluid patterns that contribute significantly to the chaotic dynamics. Our results show a transition from boundary dominated dynamics to bulk dominated dynamics as the system size is increased. The spectrum of Lyapunov exponents is used to compute the variation of the fractal dimension with system parameters to quantify how the underlying high-dimensional strange attractor accommodates a range of different chaotic dynamics

    Dynamical Instability in a Trimeric Chain of Interacting Bose-Einstein Condensates

    Get PDF
    We analyze thoroughly the mean-field dynamics of a linear chain of three coupled Bose-Einstein condensates, where both the tunneling and the central-well relative depth are adjustable parameters. Owing to its nonintegrability, entailing a complex dynamics with chaos occurrence, this system is a paradigm for longer arrays whose simplicity still allows a thorough analytical study.We identify the set of dynamics fixed points, along with the associated proper modes, and establish their stability character depending on the significant parameters. As an example of the remarkable operational value of our analysis, we point out some macroscopic effects that seem viable to experiments.Comment: 5 pages, 3 figure

    Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates

    Get PDF
    We report on the realization of high resolution electron microscopy of Rydberg-excited ultracold atomic samples. The implementation of an ultraviolet laser system allows us to excite the atom, with a single-photon transition, to Rydberg states. By using the electron microscopy technique during the Rydberg excitation of the atoms, we observe a giant enhancement in the production of ions. This is due to ll-changing collisions, which broaden the Rydberg level and therefore increase the excitation rate of Rydberg atoms. Our results pave the way for the high resolution spatial detection of Rydberg atoms in an atomic sample
    • …
    corecore