241 research outputs found

    Recording Lifetime Behavior and Movement in an Invertebrate Model

    Get PDF
    Characterization of lifetime behavioral changes is essential for understanding aging and aging-related diseases. However, such studies are scarce partly due to the lack of efficient tools. Here we describe and provide proof of concept for a stereo vision system that classifies and sequentially records at an extremely fine scale six different behaviors (resting, micro-movement, walking, flying, feeding and drinking) and the within-cage (3D) location of individual tephritid fruit flies by time-of-day throughout their lives. Using flies fed on two different diets, full sugar-yeast and sugar-only diets, we report for the first time their behavioral changes throughout their lives at a high resolution. We have found that the daily activity peaks at the age of 15–20 days and then gradually declines with age for flies on both diets. However, the overall daily activity is higher for flies on sugar-only diet than those on the full diet. Flies on sugar-only diet show a stronger diurnal localization pattern with higher preference to staying on the top of the cage during the period of light-off when compared to flies on the full diet. Clustering analyses of age-specific behavior patterns reveal three distinct young, middle-aged and old clusters for flies on each of the two diets. The middle-aged groups for flies on sugar-only diet consist of much younger age groups when compared to flies on full diet. This technology provides research opportunities for using a behavioral informatics approach for understanding different ways in which behavior, movement, and aging in model organisms are mutually affecting

    Subcortical brain atrophy persists even in HAART-regulated HIV disease

    Get PDF
    The purpose of this study was to determine the pattern and extent of caudate nucleus and putamen atrophy in HIV-infected men with well-controlled immune status and viral replication. 155 men underwent structural brain magnetic resonance imaging; 84 were HIV-infected and 71 were uninfected controls. MRI data were processed using the Fully Deformable Segmentation routine, producing volumes for the right and left caudate nucleus and putamen, and 3-D maps of spatial patterns of thickness. There was significant atrophy in the HIV-infected men in both the caudate and putamen, principally in the anterior regions. The volume of the basal ganglia was inversely associated with the time since first seropositivity, suggesting that either there is a chronic, subclinical process that continues in spite of therapy, or that the extent of the initial insult caused the extent of atrophy

    Descriptions of Scottish Priority Marine Features (PMFs).

    Get PDF
    Background The seas around Scotland are rich and diverse – Scotland’s position at the edge of the continental shelf, the long coastline, large area of sea and the mixing of warm and coldwater currents combine to make its waters a special place for marine wildlife and habitats. Scotland has over 18,000 km of coastline and its inshore and offshore areas are among the largest of any EU country, representing 13% of all European seas. Scotland’s seas are of outstanding scenic, historical and cultural value and are part of the national identity at home and abroad. The Marine (Scotland) Act 2010 and the UK Marine and Coastal Access Act 2009 include new powers and duties to ensure that our seas are managed sustainably for future generations, integrating the economic growth of marine industries with the need to protect these assets. Measures to conserve Scotland’s marine natural heritage are based on a three pillar approach, with action at the wider seas level (e.g. marine planning or sectoral controls); specific species conservation measures (e.g. improved protection for seals); and through site protection measures - the identification of new Marine Protected Areas (MPAs). To help target action under each of the three pillars, Scottish Natural Heritage (SNH) and the Joint Nature Conservation Committee (JNCC) have generated a focused list of habitats and species of priority conservation importance - the Priority Marine Features (PMFs). The aim of the current study was to produce a descriptive catalogue of the Scottish PMFs (including component habitats and species where appropriate) to serve as a reference for future nature conservation action. Whilst derived from available existing accounts, the succinct 1-page descriptions are written from a Scottish perspective, refining, but clearly linking to more generic UK, EC or OSPAR (Oslo and Paris Commission) commentary. Available information on the geographic distribution of the features was collated as part of the project and a summary map is provided in each description. Main findings This project has generated a descriptive catalogue of the 81 PMFs that have been identified in the seas around Scotland (out to the limit of the UK continental shelf). The list comprises 26 broad habitats (e.g. burrowed mud), seven low or limited mobility species (e.g. ocean quahog) and 48 mobile species, including fish (e.g. blue ling) and marine mammals (e.g. minke whale). Information on the distribution of the PMFs was collated within a Geographic Information System (GIS). This is the first time that data about such a diverse range of Scottish marine nature conservation interests have been compiled within a single repository. These data have and will be used in conjunction with other contextual base-mapping to inform the development of nature conservation advice and commentary (e.g. in the production of the Scotland’s Marine Atlas - Baxter et al., 2011). The feature distribution mapping used in the production of this report is being made available to view online via the National Marine Plan Interactive web portal (NMPi - http://www.gov.scot/Topics/marine/seamanagement/nmpihome). As new or refined data on Scottish PMFs become available, these will be fed into updates to the project geodatabase and NMPi

    Effects of rising amyloidβ levels on hippocampal synaptic transmission, microglial response and cognition in APPSwe/PSEN1M146V transgenic mice

    Get PDF
    Background: Progression of Alzheimer's disease is thought initially to depend on rising amyloidβ and its synaptic interactions. Transgenic mice (TASTPM; APPSwe/PSEN1M146V) show altered synaptic transmission, compatible with increased physiological function of amyloidβ, before plaques are detected. Recently, the importance of microglia has become apparent in the human disease. Similarly, TASTPM show a close association of plaque load with upregulated microglial genes. Methods: CA1 Synaptic transmission and plasticity were investigated using in vitro electrophysiology. Migroglial relationship to plaques was examined with immunohistochemistry. Behaviour was assessed with a forced-alternation T-maze, open field, light/dark box and elevated plus maze. Findings: The most striking finding is the increase in microglial numbers in TASTPM, which, like synaptic changes, begins before plaques are detected. Further increases and a reactive phenotype occur later, concurrent with development of larger plaques. Long-term potentiation is initially enhanced at pre-plaque stages but decrements with the initial appearance of plaques. Finally, despite altered plasticity, TASTPM have little cognitive deficit, even with a heavy plaque load, although they show altered non-cognitive behaviours. Interpretation: The pre-plaque synaptic changes and microglial proliferation are presumably related to low, non-toxic amyloidβ levels in the general neuropil and not directly associated with plaques. However, as plaques grow, microglia proliferate further, clustering around plaques and becoming phagocytic. Like in humans, even when plaque load is heavy, without development of neurofibrillary tangles and neurodegeneration, these alterations do not result in cognitive deficits. Behaviours are seen that could be consistent with pre-diagnosis changes in the human condition

    Effects of rising amyloidβ levels on hippocampal synaptic transmission, microglial response and cognition in APP_{Swe}/PSEN1_{M146V} transgenic mice

    Get PDF
    BACKGROUND: Progression of Alzheimer's disease is thought initially to depend on rising amyloidβ and its synaptic interactions. Transgenic mice (TASTPM; APP_{Swe}/PSEN1_{M146V}) show altered synaptic transmission, compatible with increased physiological function of amyloidβ, before plaques are detected. Recently, the importance of microglia has become apparent in the human disease. Similarly, TASTPM show a close association of plaque load with upregulated microglial genes. METHODS: CA1 synaptic transmission and plasticity were investigated using in vitro electrophysiology. Microglial relationship to plaques was examined with immunohistochemistry. Behaviour was assessed with a forced-alternation T-maze, open field, light/dark box and elevated plus maze. FINDINGS: The most striking finding is the increase in microglial numbers in TASTPM, which, like synaptic changes, begins before plaques are detected. Further increases and a reactive phenotype occur later, concurrent with development of larger plaques. Long-term potentiation is initially enhanced at pre-plaque stages but decrements with the initial appearance of plaques. Finally, despite altered plasticity, TASTPM have little cognitive deficit, even with a heavy plaque load, although they show altered non-cognitive behaviours. INTERPRETATION: The pre-plaque synaptic changes and microglial proliferation are presumably related to low, non-toxic amyloidβ levels in the general neuropil and not directly associated with plaques. However, as plaques grow, microglia proliferate further, clustering around plaques and becoming phagocytic. Like in humans, even when plaque load is heavy, without development of neurofibrillary tangles and neurodegeneration, these alterations do not result in cognitive deficits. Behaviours are seen that could be consistent with pre-diagnosis changes in the human condition. FUNDING: GlaxoSmithKline; BBSRC; UCL; ARUK; MRC
    • …
    corecore